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Abstract—Geomagnetism-based indoor localization has great
social and commercial value due to its pervasiveness and indepen-
dence from extra infrastructure. To improve the distinguishability
of geomagnetic signals as location clues, geomagnetic sequences
are usually taken as input. Although longer input sequence can
provide higher localization accuracy, it suffers from high response
time in practice. To address the above, we first utilize short
geomagnetic sequences as input, alleviating high response time,
and propose an efficient single position estimation model, taking
advantage of modified transformer to estimate position for each
independent short sequence. Noticing the temporal dependency
and the spatial consistency constraint during continuous posi-
tioning, we further propose a joint position estimation model
to capture the correlations among consecutive short sequences,
achieving higher accuracy with multiple short sequences. We
have conducted extensive experiments in two typical trial sites,
a narrow office area and a spacious parking lot. Experimental
results show that the proposed approach outperforms state-of-
the-art competing schemes, and the localization error is reduced
by more than 32% with shorter geomagnetic sequences.

I. INTRODUCTION

With the rapid development of Internet of Things (IoT),
indoor localization techniques play an increasingly important
role, empowering a wide range of applications in commercial
marketing [1], assisted living [2] and crowd monitoring [3].

Suffering from the loss of satellite signals by obstructions
from buildings in the indoor environment, the mature satellite-
based localization techniques (like GPS) are usually invalidated
indoors. Therefore, researchers have studied a plenty of other
signals for indoor localization, e.g., Wi-Fi [4], ultra-wide band
(UWB) [5], Bluetooth [6], geomagnetism [7] and vision [8].
Limited to the signal characteristics, most of these signals
require the deployment of extra infrastructure, incurring extra
deployment cost [9]. Benefiting from the pervasiveness and
independence from extra infrastructure, geomagnetism has at-
tracted attention to indoor localization. Geomagnetism-based
approaches achieve high localization accuracy with negligible
system deployment cost.

Intuitively, some geomagnetism-based indoor localization
approaches directly leverage the single geomagnetic signal
observation as the location clue to target position [10, 11].
However, a single geomagnetism signal observation obtained
by the device usually consists of only three component values in
the axes, which lack enough distinguishability as location clues
especially in large indoor scenes. As a result, these approaches
are prone to being inefficient and are easily affected by the

noise of the indoor environment, leading to large localization
errors consequently.

In order to improve the discrimination of location features,
some researchers propose making use of multiple continuous
geomagnetic signal observations, a geomagnetic sequence, for
localization [12–14]. The approaches leverage the geomagnetic
sequence as input and extract temporal correlations among con-
tinuous geomagnetic signal observations to generate location
feature for positioning. Compared with the single geomagnetic
signal observation, the geomagnetic sequence composed of
multiple continuous geomagnetic signals carries more distin-
guishing positioning features under temporal constraint, thus
being capable of providing more accurate localization.

Naturally, more distinguished location features can be ex-
tracted when using longer geomagnetic sequences. And some
recent studies using geomagnetic sequences have been able to
achieve high positioning accuracy with longer input sequences
[7, 15]. These methods typically use geomagnetic sequences
collected over a period of time to determine a final location.
However, it takes a long time for the user to collect enough
geomagnetic signals to get the target position at cold-start
conditions, which is not user-friendly. And it is also difficult
to ensure that the user has the patience to collect a sufficient
length sequence of geomagnetic signals in a real random walk
scenario. In addition, using long input sequences brings a
great challenge for establishing a geomagnetic sequence dataset
since the user usually walks randomly in real-world scenarios.
Therefore, the shorter sequence is more adaptable in practice.
However, as mentioned above, using shorter sequence faces
the problem that how to obtain location features with high
distinguishability, which are directly related to the performance
of localization.

To address the above challenges, we propose an efficient
localization approach for continuous positioning scenes (most
common in reality). We first take short geomagnetic sequences
as input and employ state-of-the-art transformer [16] as a
basis, devising a single position estimation model to efficiently
extract temporal features of geomagnetic sequence for coarse
positioning estimation as the first step. On this basis, con-
sidering the consistency constraint of continuous positioning,
we further propose a joint position estimation model utilizing
multiple consecutive sequences, which combines the tempo-
ral dependency of consecutive geomagnetic observations and

978-1-6654-9726-8/22/$31.00 ©2022 IEEE

20
22

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 C

om
pu

te
r C

om
m

un
ic

at
io

ns
 a

nd
 N

et
w

or
ks

 (I
CC

CN
) |

 9
78

-1
-6

65
4-

97
26

-8
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IC

CC
N

54
97

7.
20

22
.9

86
89

04

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 14,2022 at 11:18:13 UTC from IEEE Xplore.  Restrictions apply. 



the spatial consistency constraint among multiple consecutive
sequences. With efficient location extraction and consistency
constraint, the proposed approach achieves high localization
accuracy even for short sequences. In summary, we make the
following contributions:
• We propose a single position estimation model based

on transformer to efficiently extract temporal features of
independent short sequence for localization, and efficiently
improve localization accuracy especially with short input
sequence, compared with other existing approaches.

• Considering the consistency constraint during continuous
positioning, we devise a joint position estimation model.
We first encode this global constraint with a multi-layer
structure, then jointly predict the positions for consecutive
short sequences with a serial decoder. And the predictions
from the single position estimation model are employed
to alleviate the accumulated error of serial decoding.

• We have conducted extensive experiments in two typical
trial sites. Experimental results show that the proposed
approach achieves higher accuracy compared with other
state-of-the-art competing schemes, when using different
lengths of geomagnetic sequences. And the improvement
effect is more significant for the shorter sequences.

In addition to the geomagnetic signal, the proposed approach
can also be applied to other types of sequential signal, such as
visible light [17] and radio signal [18], for localization.

The remainder of the paper is structured as follows: We
review the existing work related to our approach in Section
II and explain the calibration process of geomagnetic signals
in Section III. Then, we elaborate on our approach in section
IV. We present illustrative experimental results in Section V
and conclude in Section VI.

II. RELATED WORK

We review related work as follows. Some researchers use
discrete geomagnetic signals collected at user locations to
match with geomagnetic fingerprint database to achieve local-
ization. In many works, discrete geomagnetic signals need to
be fused with other signals to solve the problem of insufficient
discrimination of positioning features. For example, the work
[19] proposes a fingerprint localization algorithm combining
channel state information (CSI) and geomagnetic field intensity,
and leverages a multi-scale K-nearest Neighbor (MDS-KNN)
method to achieve fingerprint matching localization. The po-
sitioning system LMDD [20] proposes a detection framework
based on the majority voting model, which fuses geomagnetic
signals with other signals.

Some researchers use continuous geomagnetic signals col-
lected during movement to improve the discrimination of posi-
tioning features. Travi-Navi [21] leverages dynamic time warp-
ing (DTW) for localization, which considers both stretching
and squeezing sequences to align them. Magicol [22] designs
a bidirectional particle filter, which uses DTW to update the
weight of particles. However, such methods require a lot of
sequence matching work, leading to high computational cost.

Some recent approaches employ neural networks to process
sequential inputs for localization. Recently, some researches
[23, 24] leverage RNN to localize with geomagnetic sequence.
DeepML [12] uses LSTM to extract the fusion location features
of geomagnetic sequence signals and visible light signals for
indoor localization. MAIL [7] leverages the attention mecha-
nism to extract multi-scale features of geomagnetic sequence
to predict user position. However, most of these work require
long geomagnetic sequences as input, which is not applicable
in practice.

Transformers [16] are a recently developed class of deep
learning models, which are suitable for processing time series
data. Transformers perform feature extraction of contextual
information based on an attention mechanism, and multi-
headed attention allows it to consider information from different
subspace representations. Due to its efficient parallel computing
capability and superior performance, transformers are widely
used in many fields, such as NLP [25] and time series process-
ing [26].

III. CALIBRATION OF GEOMAGNETIC SIGNALS

When the user holds the device in different poses, the device
may collect different geomagnetic signals even in the same
position. We calibrate the geomagnetic signals collected in
the user coordinate system to the standard coordinate system
according to the offset of the device.

The device sensor collects sensor signals v = {b, a},
where b = [magx,magy,magz]

T indicates the raw 3-axis
geomagnetic signal magnitude, and a = [ax, ay, az]

T indicates
acceleration vector. We assume φ, θ,ψ denote corresponding
the roll angle, pitch angle, and yaw angle respectively,and φ,
θ,ψ can be calculated as:

φ = arctan(
ay
az

), (1)

θ = arctan(
ax
az

), (2)

ψ = arctan(
aycosφ− azsinθ

axcosθ + aysinθsinφ+ azsinθcosφ
). (3)

The rotation matrix A from the user coordinate system to the
standard coordinate system can be calculated as:

A(φ, θ, ψ) =

cosψ −sinψ 0
sinψ cosψ 0

0 0 1


 cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

1 0 0
0 cosφ −sinφ
0 sinφ cosφ

 . (4)

The geomagnetic signals are calibrated using the rotation matrix
A:

bcalibrated = A(φ, θ, ψ) · b. (5)

Fig. 1 shows the raw geomagnetic signals collected with dif-
ferent device holding postures and the signals after calibration.
It can be seen that the magnitude of calibrated geomagnetic
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(a) Raw X-axis signals. (b) Raw Y-axis signals. (c) Raw Z-axis signals.

(d) Calibrated X-axis signals. (e) Calibrated Y-axis signals. (f) Calibrated Z-axis signals.

Fig. 1: Raw geomagnetic signals collected in different device poses and the signals after calibration.

signals collected from different poses is similar. We notice that
the calibrated geomagnetic signals along the X axis are weak,
resulting in the geomagnetic signals in this direction hardly
fluctuating even if the position changes.

In addition, we calculate the dimensionless magnitude of
bcalibrated, as magnorm = ‖bcalibrated‖2, to replace the cal-
ibrated geomagnetic signals along the X-axis. Then calibrated
geomagnetic signals can be modeled as:

bcalibrated = [magy,magz,magnorm]
T
. (6)

For convenience, the calibrated geomagnetic signals below
are represented by b.

IV. THE DESIGN OF THE APPROACH

In this section, we elaborate the core design of the proposed
approach. First of all, we overview the overall structure in
Section IV-A. Then we present the single position estimation
for the single independent sequence in Section IV-B, which is a
preliminary work. Finally, we elaborate the details of the joint
position estimation model in Section IV-C.

A. Overview

The overall framework of the proposed approach is presented
in Fig. 2. Firstly, continuous geomagnetic signals are collected
by the mobile device while users walk, and collected data is
calibrated in real time. For the convenience of representation,
Fig. 2 shows a 1-element sequence (actually the geomag-
netic sequence is a multivariate sequence). Then continuous
geomagnetic signals are segmented into multiple consecutive
geomagnetic sequences with specific overlapping by sliding

windows. These short geomagnetic sequences are fed into
the single position estimation model from ¬. With extracted
temporal features, the model estimates the corresponding single
position independently. Meanwhile, these consecutive short
geomagnetic sequences are taken as input to the joint posi-
tion estimation model from ­ to extract the spatio-temporal
continuity among them. We also utilize the coarse position
produced by the single position estimation model to further
enhance the spatial constraint and alleviate the accumulated
localization error. Finally, the joint position estimation model
outputs the more accurate consecutive estimate positions.

B. Single position estimation for single independent sequence

The positioning approaches using continuous geomagnetic
signals usually estimate the single position for a single se-
quence. It refers to calculating a representative position of
the track (usually the position at the end of the track) using
geomagnetic signals collected along the track.

We leverage the sliding window to generate many geo-
magnetic sequences. The continuous geomagnetic signals are
segmented into multiple consecutive geomagnetic sequences
with specific overlapping by sliding windows. The resulting
geomagnetic sequences are expressed as S = [s1, s2, ...].
Each movement of the sliding window produces a snapshot,
corresponding to a geomagnetic sequence. We record these
sequences and the order they were generated.

In this part, we take the geomagnetic sequence as the sample,
and the end position of the track corresponding to the sequence
as the positioning target. Due to the temporal continuity of
geomagnetic sequence, time series representation models can
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Fig. 2: Overall the proposed approach.

be used to extract temporal features from the geomagnetic
sequences. We employ the encoder part of the transformer [16]
architecture to extract temporal features and modify the model
for regression tasks.

In particular, each sample is a multivariate time series of
length w and three different variables, constitutes a sequence
of w feature vector bt: s ∈ Rw×3 = [b1, b2, ..., bw] , bt ∈
R3 = [magy,magz,magnorm]. Then s is denoised by outlier
cleaning and smoothing filtering. The feature vector bt is
linearly projected onto a d dimensional vector space to obtain
the feed-forward output ut, where d is the dimension of internal
representation vectors of the transformer model. In order to
make it aware of the sequential nature, it is necessary to add
positional encodings Wpos ∈ Rw×d to the the feed-forward
output U ∈ Rw×d = [u1, u2, ..., uw]: U ′ = U+Wpos. We apply
the sinusoidal encodings which were originally proposed by
[16]. The resulting vector U ′ is fed into a stack of four decoder
blocks. Each encoder block consists of a self-attention layer and
a feed-forward layer. Each layer is followed by a normalization
layer. The encoder blocks produce a d dimensional vector. The
final encoded d dimensional vectors corresponding to all time
steps are reshaped into a 1 dimensional vector of length w · d,
which is linearly mapped to an estimated position.

We define the L2 loss function e as the overall mean
localization error during training stage:

e =
∥∥∥l̂ − c∥∥∥

2
, (7)

where l̂ is the ground truth location corresponding to each one
and c is the estimated position.

C. Joint position estimation with multiple sequences

We notice that when the user continues positioning, the
observation information (e.g. geomagnetic sequence) seen at
each moment is of temporal continuity, and the position cor-
responding to each moment is of spatial continuity (Fig. 3).
We propose to utilize multiple consecutive sequences for joint
position estimation. The temporal dependency of consecutive
geomagnetic observations and the spatial consistency constraint
among multiple consecutive sequences can be used to further
improve the localization accuracy.

Fig. 3: Temporal and spatial continuity during continuous
positioning.

We propose the joint position estimation model to capture
spatio-temporal continuity, as shown in Fig. 4. The input of
the model is several geomagnetic sequences arranged in the
order generated by the sliding window, which represent the
observation information at several consecutive spatial positions.
The output of the model is several consecutive estimated
positions.

1) Spatio-temporal constraint features extraction: During
continuous positioning, assuming that M geomagnetic se-
quences are input to the network, we express the input as q =
{s1, s2, ..., sM}, which contains M geomagnetic sequences
corresponding to consecutive M spatial positions.

We devise a multilayer transformer-encoder to extract the
spatio-temporal constraint features among M consecutive se-
quences. The temporal features of the single geomagnetic
sequence in q is extracted by a low-layer transformer-encoder
respectively. And the low-layer transformer-encoder outputs M
1-dimensional vectors of length w · d, which is presented as
F = {f1, f2, ..., fM}.

In order to establish connections between the observation
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Fig. 4: Architecture of the joint position estimation model.

information of different spatial positions, the low-layer fea-
ture representation f corresponding to M positions is taken
as time steps, concatenated into a feature sequence vector
F̄ ∈ RM×(w·d) = [f1, f2, ..., fM ] with spatial continuity.
Then we employ a high-level transformer-encoder to extract
the spatial features. Different from the low-layer transformer-
encoder is used to extract the temporal features from the
single sequence, the high-level transformer-encoder extracts the
spatial consistency constraint features among multiple consec-
utive sequences. We input F̄ into the high-layer transformer-
encoder, which produces the global embedding representation
Z ∈ RM×d as the spatio-temporal constraint features.

2) Continuous position estimation: We implement continu-
ous positions estimation based on the decoder part of the trans-
former architecture. It is similar to the transformer-encoder, the
transformer-decoder is composed of a feed-forward input layer,
a positional encoding layer, and a stack of four decoder blocks.
The decoder input begins with a start symbol, and the feed-
forward input layer maps the decoder input to a d dimensional
input representation vector. In addition to the self-attention
layer and the feed-forward layer, the decoder blocks inserts a
third layer to apply self-attention mechanisms over the global
embedding representation Z. Finally, there is an output layer
that maps the output of the last decoder block as the estimated
positions corresponding to multiple continuous moments.

In particular, instead of using a fixed symbol (e.g. the dummy
start in NLP) as the initial input of the decoder, we take the
first element s1 of q and employ the single position estimation
model (section IV-B) to estimate a coarse position c1 as the
initial input of the decoder. Starting with the possible position
provides the coarse range estimation for subsequent predictions
and enhances spatial constraints.

The joint position estimation model works in parallel in the
training stage, and the loss function ε consists of the local-
ization error L2 loss and the displacement variance loss. The
displacement variance represents the variance of the distance

between adjacent localization locations. And ε is defined as
follows:

ε =
1

M

M∑
i=1

∥∥∥l̂i − li∥∥∥
2

+
1

M − 1

M−1∑
i=1

(
‖li − li+1‖2 −∆l

)2
,

(8)

∆l =
1

M − 1

M−1∑
i=1

‖li − li+1‖2 , (9)

where M is the number of estimated position, l̂i is ground truth
location corresponding to each sequence, li is the estimated
position and ∆l is the average adjacent location distance.

In the prediction stage, the joint position estimation model
outputs M consecutive estimated positions serially. The serial
output results in cumulative errors increasing with the number
of predicted rounds. We utilize independent position estimation
for the single geomagnetic sequence to alleviate cumulative
errors. In each round of prediction, the weighted result of the
previous predicted position and the current coarse position is
used as input to the decoder. Specifically, the coarse position
of the current round is obtained by single position estimation
(section IV-B) for the geomagnetic sequence corresponding to
the current moment. The input for round i of the decoder is
represented as follows:

xi = α · li−1 + (1− α) · ci, (10)

where li−1 denotes the predicted position at the previous round,
ci denotes the coarse position at the current round and α
denotes the ratio.

V. ILLUSTRATIVE EXPERIMENTAL RESULTS

We present detailed experimental settings and comparison
schemes in Section V-A and illustrative experimental results in
Section V-B.
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(a) Office area. (b) Parking lot.

Fig. 5: Floorplans of the trial sites.

A. Experimental Settings and Comparison Schemes

1) Dataset and experimental setting: We conduct the ex-
periment in two typical trial sites. One is a narrow office
area, the other is a spacious parking lot. The site plans are
shown in Fig. 5. The office area covers around 2054 m2 and
the parking lot covers around 2560 m2. To build datasets,
we develop an Android application to collect sensor signals,
including geomagnetic signal data and acceleration sensor data.
The application continuously records signals along the path
as the surveyor walks along the survey path. The sequence
of signal values collected from each path can be expressed
as v = {v1, v2, ...}, where vi = {ai, bi}, bi is the raw
3-axis geomagnetic signal magnitude and ai represents the
acceleration vector. Through the data calibration processing,
the calibrated geomagnetic signals can be represented as b =
[magy,magz,magnorm]

T
. The sampling frequency of signals

is 50Hz, and the moving step size of the sliding window is set
to 50 for segmenting the geomagnetic sequence.

We also leverage sliding windows to construct multiple
consecutive geomagnetic sequences as inputs to the joint po-
sition estimation model. The length of the sliding window M
depends on the number of geomagnetic sequences input, each
of which corresponds to the observation information at a spatial
position. The consecutive geomagnetic sequences is represented
as Q = {q1, q2, ..., qn−M+1} , qk = {sk, ..., sk+M−1}.

For training dataset, we design dense survey path in trial
sites. And for testing dataset, volunteers are asked to walk
through a number of randomly paths. Then geomagnetic signal
sequences in each path will be segmented into geomagnetic
sequence samples by sliding windows. We have collected
699 and 1390 training sequences in the office area and the
parking lot, respectively. For localization, we have collected

another 285 and 410 magnetic sequences, respectively. We use
training samples from different trial sites to train our model
individually and evaluate its performance with test samples
from the corresponding trial site. The baseline parameters in
our experiment is presented in TABLE. I. We implemented
our network with PyTorch1 and employ the Adam optimizer to
update weights.

TABLE I: Baseline parameters in experiment.

Parameters Value

epoch 1500
batch size 32
initial learning rate 0.0005
learning rate decay 0.0002
dim.model 64
num.heads 8
num.encoder blocks 4
num.decoder blocks 4
num.FFW 256

2) Comparison schemes: Our approach will be compared
with the following state-of-the-art geomagnetic localization
approaches:
• Magicol [22] vectorizes collected sequential geomag-

netism based on user’s steps and designed an enhanced
bi-directional particle filter to estimate the position. It
employed DTW to compare geomagnetic sequences with
a database to update particles.

• MAIL [7] employs recurrent neural network and the
attention mechanism to extract multi-scale features of
geomagnetic long sequence to infer current location.

• BiLSTM [27] has been used to extract geomagnetic se-
quence features for position estimation in recent works
[12, 15]. In our experiment, we build a 4-layer BiLSTM
network as a comparison scheme.

• Transformer-encoder [16] is an advanced sequence feature
extraction structure. We leverage the encoder part of
the transformer for location estimation as a comparison
scheme (section IV-B).

Compared with the one-to-one of the above approaches
(input a single geomagnetic sequence and output a single esti-
mated position), our approach is many-to-many (input multiple
geomagnetic sequences and output multiple estimated posi-
tions). The length of the single geomagnetic sequence in each
set of inputs in our approach is equal to the length of a single
input in comparison schemes. In practical localization, our
approach reuses the sequence generated at the past moment, and
the system only needs to input the newly generated sequences.

B. Experimental Results

We compare our approach with state-of-the-art competing
schemes. Fig. 6 shows the CDF of localization error in the
office area. The length of sequence is set to 400. Our approach
considers the position information of three moments and uses
three sequences as inputs. Fig. 6 demonstrates that our approach

1https://pytorch.org/
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Fig. 6: CDF of location error in the
office area.

Fig. 7: CDF of location error in the
parking lot.

Fig. 8: CDF of location error using
longer sequences in the office area.

Fig. 9: Mean localization error with
different lengths of geomagnetic se-
quences.

Fig. 10: Mean localization error with
different numbers of geomagnetic se-
quences as input.

Fig. 11: CDF of localization error of
model’s variants.

achieves higher accuracy than comparison schemes. Our ap-
proach takes into account the geomagnetic information seen at
multiple moments and constructs a spatio-temporal connection
between those, thus is able to achieve higher overall accuracy.

Fig. 7 shows the CDF of localization error in the parking lot.
The length of sequence is 200 and three sequences are used as
inputs in our approach. It can be seen that our approach is
also able to achieve higher localization accuracy. And some
comparison schemes perform worse compared to the office
area. This is because the parking lot is more spacious and the
discrimination of geomagnetic signals is less. Our approach
also achieves sufficient localization accuracy in more spacious
trial sites.

Fig. 8 shows the CDF of localization error using longer se-
quences in the office area. The length of geomagnetic sequence
is 700. It can be seen that our approach and some comparison
schemes achieve high accuracy when using long sequences
for positioning. However, MAIL and transformer-encoder have
long tails compared with our approach. The reason is that our
approach takes into account the constraint relationship among
the consecutive estimation positions, which can avoid large
errors compared with the individual position estimation at each
moment.

We conducted experiments on different lengths of geo-
magnetic sequences in the office area. TABLE. II illustrates
the mean localization accuracy of different lengths. Fig. 9
shows the change of the mean localization error with different
lengths of geomagnetic sequences. It can be seen that the

mean localization error increases with the decrease of sequence
length. Our approach outperforms state-of-the-art comparison
schemes in mean localization error, especially for shorter input
sequences. Compared with these comparison schemes, the
proposed approach is able to reduce the localization error by
around 10% when the length of sequence reaches 700, and by
more than 32% when the length decreases to 400.

TABLE II: Mean localization error with different lengths.

300 400 500 600 700

BiLSTM 7.735 7.126 7.011 7.014 6.431
Magicol 6.926 4.960 3.572 3.078 2.595
MAIL 4.379 2.899 2.337 1.977 1.222
Transformer-encoder 4.111 2.866 2.508 1.879 1.527
Ours 3.091 1.939 1.875 1.083 1.092

Fig. 10 shows the change of the mean localization error
with different numbers of geomagnetic sequences as input. We
conducted experiments with sequences of length 400. It can
be seen that there is no significant difference in the mean
localization error between 2 and 5 geomagnetic sequences.
The best effect can be achieved when three geomagnetic
sequences are input. After reaching the balance point, the mean
localization error increases as the number of input geomagnetic
sequences increases. This is because the increase in the number
of input sequences leads to more serial position predictions, and
the longer serial prediction sequence causes greater cumulative
errors.

Fig. 11 illustrates the CDF of localization error of model’s
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variants. For the decoder module of the model, we evaluate (a)
using only the fixed start symbol, (b) using the coarse position
instead of the fixed start symbol as the initial input of the
decoder, (c) fusing the coarse position in each round predict
on the basis of (b). It shows that (a) only using a fixed start
symbol has a poor positioning effect, while (b) using the coarse
position as the start symbol greatly improves the positioning
effect. This is because the spatial constraint is enhanced by the
coarse estimation of the starting position, thus the overall lo-
calization accuracy is improved. In addition, we add the coarse
position to each round of prediction, which further improves
the positioning effect. We speculate that the serial prediction
of multiple positions will lead to cumulative errors with the
increase of rounds, while the individual estimation of each
position is able to alleviate the accumulation of localization
error.

VI. CONCLUSION

The localization accuracy of geomagnetic sequences is
closely related to the length of the sequences. The shorter
sequence may lead to larger localization errors. To address
the above, first we devise the single position estimation model
for independent short sequence. On this basis, we propose
the joint position estimation model with multiple consecutive
sequences, which combines the temporal dependency of con-
secutive geomagnetic observations and the spatial consistency
constraint among multiple consecutive sequences to achieve
high localization accuracy for the multiple short sequences. We
have conducted extensive experiments in two typical trial sites:
a narrow office area and a spacious parking lot. Experimental
results show that our approach achieves higher localization ac-
curacy compared with other state-of-the-art competing schemes
with different sequence length. Furthermore, the localization
error is reduced by more than 32% with short geomagnetic
sequences.
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