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GC-Loc: A Graph Attention Based Framework for Collaborative
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Indoor localization techniques play a fundamental role in empowering plenty of indoor location-based services (LBS) and
exhibit great social and commercial values. The widespread fingerprint-based indoor localization methods usually suffer
from the low feature discriminability with discrete signal fingerprint or high time overhead for continuous signal fingerprint
collection. To address this, we introduce the collaboration mechanism and propose a graph attention based collaborative indoor
localization framework, termed GC-Loc, which provides another perspective for efficient indoor localization. GC-Loc utilizes
multiple discrete signal fingerprints collected by several users as input for collaborative localization. Specifically, we first
construct an adaptive graph representation to efficiently model the relationships among the collaborative fingerprints. Then
taking state-of-the-art GAT model as basic unit, we design a deep network with the residual structure and the hierarchical
attention mechanism to extract and aggregate the features from the constructed graph for collaborative localization. Finally,
we further employ ensemble learning mechanism in GC-Loc and devise a location refinement strategy based on model
consensus for enhancing the robustness of GC-Loc. We have conducted extensive experiments in three different trial sites, and
the experimental results demonstrate the superiority of GC-Loc, outperforming the comparison schemes by a wide margin
(reducing the mean localization error by more than 42%).
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1 INTRODUCTION
In the wake of the highly urbanized development of human society, people usually spend most of their time in the
indoor environment nowadays. Since the scale and the layout of indoor spaces become more and more enormous
and intricate, the demands for accurate indoor locations are surging. And the past decade has witnessed the rapid
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development and widespread application of indoor localization techniques in response to the urgent demands for
various indoor location-based services (LBS), e.g., pedestrian or robot localization [3], on-demand delivery [7],
and crowd monitoring [20], to name a few.
As the traditional satellite-based positioning systems (such as GPS) are prone to be ineffective indoors on

account of the signal attenuation caused by poor connectivity between end devices and satellites, it triggers
researchers to bend their energies to explore various ambient signals for indoor localization, such as Wi-Fi [23],
BLE [11], sound [25], vision [9] and geomagnetism [27, 31]. From a system deployment and application point of
view, all these signals explored for indoor localization can be roughly divided into two categories, i.e., signals
which require extra infrastructures to be pre-deployed and infrastructure-free ones [52]. In the first category,
these signals usually have specific propagation mode and are easy to handle and control, e.g., Wi-Fi, BLE and other
electronic signals, as they are generated from manually pre-deployed infrastructures on the basis of the layout of
indoor scenes. Although effective and easy to customize and control, it usually brings high deployment cost and
maintenance expense especially in large indoor environments, which hinders its large-scale application in reality.
In addition, these signals also fail to perform in some scenarios where the extra infrastructure deployment is not
allowed for privacy or security considerations, like specific military field. For the second category, the signals
without the requirements for extra infrastructure support are naturally low-cost and easy to deploy when applied
for indoor localization. Taking the geomagnetic signal as an example, it shows great application prospects due to
its omnipresence and no need for any extra infrastructures, since the geomagnetic signal mainly generates from
natural earth’s magnetic field [15]. The drawback is that these signals usually don’t have specific propagation
mode or distribution, e.g., collected magnetic signals usually have uncontrollable local variations due to the
metamorphic ferromagnetism nature of indoor environments. So the crux is how to effectively establish the
identifiable mapping relationships between these uncontrollable signal observations and spatial locations, facing
complex and diverse indoor environments.

The underlying indoor positioning algorithms, on the other hand, are critical to make the best of these signals’
characteristics in the indoor environment for effective localization. And the existing mainstream algorithms for
indoor localization generally fall into two categories, i.e., geometric-based and fingerprint-based. For geometric-
based approaches, the geometrical relationship of spatial location distribution is taken into consideration as
localization clues, intuitively. To be specific, these approaches usually employ the relative measurements of
the signals, e.g., the signal propagation delays, the arrival angle of the signal, through which they are able to
obtain the relative distance and the direction of the target. Then the corresponding location can be calculated by
applying geometric theorems. And the typical geometric-based algorithms [13] include adjacent direct localization,
trilateration localization and triangulation localization, which usually utilize time of flight (TOF) [29], time of
arrival (TOA) [53], time difference of arrival (TDOA) and angle of arrival (AOA) [6], to name a few. In practice, the
performance of geometric-based approach mainly depends on the accuracy of these relative signal measurements,
which are usually effected by manifold factors in indoor environment.

Different from the geometric-based schemes, the fingerprint-based approaches are mainly based on the pre-
established fingerprint database and the fingerprint matching strategies, which are widely used in practice. And
these approaches usually consist of two phases, i.e., offline stage for the fingerprint database establishment
and matching strategy/model implement, online stage for the target location estimation based on the real time
measurements. For fingerprint indicators, the received signal strength indication (RSSI) and the channel state
information (CSI) [41] are widely adopted in existing schemes. In addition, the vision information [24] is also
employed as a kind of fingerprint in some indoor scenes with rich textures, inspired by the success of deep learning
in image process field recently. Despite these fingerprints have various different forms, the localization accuracy
always relies on the spatial discriminability of the fingerprints. Most existing fingerprint-based approaches
leverage either spatially discrete fingerprints (e.g., a Wi-Fi/Bluetooth RSSI, a geomagnetic measurement or an
image at a fixed location) or temporally consecutive ones (e.g., a signal RSSI vector, a geomagnetic measurement
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(a) Collaboration among multiple users (b) Collaboration among multiple timestamps of single user

Fig. 1. The diagram of the two modes of collaboration: (a) For common indoor scenes, multiple users are available for
collaboration. (b) For few scenes with only single user, the multiple timestamps of single user can be used for collaboration.

sequence or a video clip) for localization, which either suffers from large localization errors due to signal
ambiguities or high respond time overhead with the sequence collection. Therefore, to achieve both accurate and
efficient localization with the fingerprint-based approaches, it’s supposed to improve the spatial discriminability
of the fingerprints as much as possible for one thing, but on the other, the respond time overhead and map
constraints also need to be taken into consideration for the efficient system applications. And it’s still a challenge
in practice.

Recently, with the rapid development of the techniques like Peer-to-Peer [54] and Crowdsourcing [11, 22], the
concept of collaboration and sharing provides another perspective for efficient indoor localization. Actually, the
most common indoor positioning application scenarios are usually some large places with high crowd density,
such as the shopping mall, the hospital and the passenger station. And this provides a basis condition for the
efficient collaborative indoor localization among multiple users. As discussed above, the signal fingerprints
collected by the single user either lack of sufficient discriminabilty with discrete observations or restricted by
long respond time overhead with long sequences. Employing collaborative mechanism as shown in Fig. 1 , fusing
multiple discrete fingerprints from multiple spatially interconnected sources are able to provide much higher
discriminability without the need to collect long signal sequence, meanwhile avoiding the high respond time and
map constraints.

Inspired by the idea above, we propose aGraph attention based framework forCollaborative indoorLocalization,
termed GC-Loc. Specifically, we first construct an adaptive graph representation to model the collaborative
relationships among the signal fingerprints from multiple sources. Then we employ the optimized GAT (Graph
Attention Network [45]) and further bring in the residual structure and hierarchical attention mechanism to
realize efficient feature extraction from the constructed graph representation for collaborative localization, since
the recent proposed GAT exhibits great ability to handle the multivariate non-Euclidean data structure. Moreover,
we take advantage of ensemble learning mechanism and further devise a signal similarity based multi-model
fusion strategy for the multiple models’ joint location estimation based on model consensus, finally achieving
accurate and robust collaborative indoor localization.
In a nutshell, we make the core contributions in this paper as follows.
• Different from traditional methods, we propose an efficient collaborative localization mechanism, taking
full advantage of the collaborative information that available in most common indoor positioning scenarios
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in practice. And the proposed collaborative localization framework can be easily extended or incorporated
into most existing fingerprint-based indoor localization approaches.

• To facilitate the efficient collaboration, we construct an adaptive graph representation to model the
collaborative relationships among the signal fingerprints from multiple users. And the constructed graph
representation is used to achieve collaborative localization among multiple users. Besides, it also works
well with multi-timestamps’ collaboration for single user scenes, as illustrated in Fig.1.

• For the constructed graph representation, we employ state-of-the-art GAT model with the customized
optimization for the location feature extraction. In addition, we bring in the residual structure and devise a
hierarchical attention mechanism to further increase the expression ability of the proposed network, facing
the complex and diverse indoor scenes.

• Considering the inevitable random environment noise and signal outliers in practice, we employ ensemble
learning and devise a signal similarity based model fusion strategy for multiple models’ joint location
estimation. Through the model consensus, GC-Loc can overcome the problem that the individual model is
prone to random errors, further enhancing the robustness.

As mentioned earlier, magnetic field signals don’t require the extra infrastructure deployment and have
suitable spatial distribution in indoor environment. Therefore, as an example, we utilize the magnetic field signal
fingerprints as input to evaluate the proposed GC-Loc in this paper. Meanwhile, the relative Bluetooth signal and
IMU sensor data are employed for collaborative relationship construction, and they are widely applied in mobile
devices and they are also without the extra infrastructure deployment. So the proposed GC-Loc in this paper is
able to achieve infrastructure-free collaborative indoor localization.

The remainder of this paper is organized as following. We review the related works in Section 2. The workflow
of GC-Loc is presented in Section 3 and the detailed design of GC-Loc is elaborated in Section 4. Then we illustrate
the experimental results in Section 5. Finally, we discuss several practical limitations in Section 6 and conclude in
Section 7.

2 RELATED WORK
For the urgent demands of plentiful indoor LBS applications, indoor localization has been explored for decades. To
realize sufficient accuracy and efficiency in complex and diverse indoor environments, researchers have proposed
plenty of indoor localization methods and utilized various signals, such as widespread Wi-Fi [10], Bluetooth
Low Energy (BLE) [11] and ultra-wide band (UWB) [12]. Although effective in some specific indoor scenes, the
approaches based on these signals either suffer from the signal fluctuations caused by multi-path fading, or high
system deployment cost and maintenance expense. And it hinders the large-scale application in reality. Besides
these common electronic signals, the image/video-based approaches [5] have attracted much attention recently,
with the rapid development and the success of image processing techniques. For example, HAIL [32] makes used
of the image confirmation after taking images to realize a highly automated image-based localization algorithm.
However, suffering from the motion blur or the loss of focus[58], the image-based indoor localization methods
are usually prone to noise. And on the other hand, the construction of visual landmark database [30] is also
labor-intensive in practice. Among all these explored signals, magnetic field signal exhibits good application
prospect for indoor localization, since it is pervasive and relatively stable. More important is that magnetic
field signal doesn’t need the extra infrastructure deployment[16, 47], and it’s almost immune to the pedestrian
occlusion, compared with other signals, e.g., vision, acoustics.

Most existing indoor localization approaches rely on fingerprint techniques and can be broadly divided into two
categories, i.e. discrete fingerprint-based methods and continuous sequence-based methods. In the first category,
a discrete signal observation is usually taken as the reference of the corresponding location [56]. For example,
SemanticSLAM [1] proposes to calibrate the current position with the cluster mechanism among collected
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Table 1. Major symbols used in the paper.

Notation Definition
M A magnetic field signal fingerprint
g A constructed adaptive graph representation
𝐷 The pre-established geo-tagged magnetic signal fingerprint database
𝐷𝑔 The dataset of the constructed graph for model training
𝑅 The number of the constructed graph in 𝐷𝑔
𝑇 The number of the trained models for ensemble learning
𝐾 The number of the heads in multi-head mechanism
𝑄 The depth of the optimized deep GAT model (the number of layers)
hi The embedding feature of the vertex 𝑖 in the constructed graph
l A prediction/estimation location (𝑥,𝑦)
L A set of prediction/estimation locations for a graph
𝜁 The loss function defined for the model training
𝜖 The overall mean localization error

magnetic signal observations. However, suffering from the limited discernibility, the discrete signal fingerprints
are usually ambiguous, resulting in degraded distinctiveness of the spatial location features. And these lead
to large localization errors consequently. To tackle this, some researchers consider the temporal correlations
of consecutive signal observations, utilizing the signal sequence as input for localization [57]. For example,
Travi-Navi [58] uses the magnetic sequence as input instead of discrete signal fingerprint, and further utilize the
dynamic time warping (DTW) algorithm to match with the pre-established database for localization. In addition,
some fusion-based methods take the magnetic sequence as a component of input for localization [33, 40]. The
approaches in [21, 48] utilize the particle filter mechanism, in which the magnetic sequence is used for obtaining
the observation location by matching. And WAIPO [14] directly fuses image with magnetic signal sequence
for localization to enhance the accuracy. Recently, inspired by the success and popularization of deep learning
techniques, many researchers propose to take advantage of deep neural network to explore the location clues for
indoor localization [2, 17, 42, 46]. For example, DeepML [46] takes magnetic signal sequence as input and employs
long short-term memory (LSTM) network to extract the features for localization. MAIL [31] further considers the
different scales of the signal fluctuations in collected magnetic sequence. MAIL extracts and fuses the features
under different scales to improve the feature discernibility, thus achieving higher accuracy. And ST-Loc [27]
proposes to convert the magnetic sequence into different representations, then utilizes optimized networks to
extract features under different dimensions for localization. Although efficient, most of these approaches usually
need a long sequence as input to provide sufficient features for accurate localization, which will cause high time
overhead for the long sequence collection and limit to the survey path constraints.

On the other hand, inspired by the concept of sharing mode, the collaboration and encounter based localization
techniques have attracted much attention [36]. Considering the actual application scenarios that usually have high
densities of smart devices, the peer assistance and relative information are taken into consideration for indoor
localization [19, 22], instead of only relying on the location clues from individuals. Specifically, some researches [14,
28, 44] propose to bring in the ranging constraints among multiple users/devices while utilizing the collected
signal fingerprints for indoor localization. For example, Centaur [28] fuses the Wi-Fi measurement and acoustic
ranging techniques into a single systematic framework based on Bayesian inference. And WAIPO [14] realizes
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Fig. 2. The workflow of the proposed collaborative localization system.

collaborative indoor localization by fusing Wi-Fi signal measurements, magnetic fingerprints, image-matching
and people co-occurrence. However, these approaches which utilize Wi-Fi, acoustic [26] or ZigBee [38] usually
require extra infrastructure support, limiting the scale-up ability of the solutions. To facilitate the application in
practice, some researchers propose to explore infrastructure-free approaches [8, 35, 49] for collaborative indoor
localization. P2-Loc [8] aims at on-demand delivery application and realizes a person-to-person localization
mechanism which detects the encounter events through Bluetooth on couriers’ smartphones, then infers couriers’
relative locations. While P2-Loc is infrastructure-free, it’s strongly dependent on the encounter detection and
assumes that the encounters are dense. Besides, it also requires the condition that the couriers usually take
the shortest paths and there are no detours in between. CLIPS [35] also does not require pre-existing indoor
infrastructures or extra deployments, and it employs dead reckoning techniques to filter out the invalid candidate
coordinates, which suffers a lot from the cumulative errors in long-time continuous positioning. In this paper,
the proposed GC-Loc first employs infrastructure-free signals (magnetic field fingerprints, relative Bluetooth
RSSI or short IMU measurements) with no need for any infrastructure deployment. Then, with the constructed
adaptive graph representation, GC-Loc can not only realize efficient collaborative localization among multiple
users, but also work well in single user scenarios, thus achieving better expansibility and portability compared
with the existing approaches that usually aim at a specific application or scenario, e.g., P2-Loc [8] for on-demand
delivery, CLIPS [35] for the emergency scenario. In addition, GC-Loc can be also easily extended or incorporated
into most existing fingerprint-based indoor localization schemes.

3 SYSTEM WORKFLOW
In this section, we elaborate the workflow of the proposed GC-Loc. As illustrated in Fig. 2, the overall workflow
contains two main stages, i.e. an offline stage and an online stage. In the offline stage, surveyors first carry a
client device to collect the magnetic field signal fingerprints at the preset reference points according to the
site floorplan. Then the collected magnetic signal fingerprints will be labeled with the corresponding location
coordinates of the reference points. With labeled magnetic signal fingerprints, we construct the database of the
proposed graph representation (Section 4.2), and the detailed process is presented in Algorithm 2. Based on the
constructed database, we train multiple localization models (based on the design network in Section 4.3) which
will be used in the online stage for joint location estimation.

In the online stage, we implement a collaborative system as elaborated in Section 5.1.1. And multiple users carry
the clients and walk in the trial site. The installed application will collect the sensor data (including magnetic
signal fingerprint, relative Bluetooth RSSI and IMU sensor readings). Then the collected data will be used to
construct the adaptive graph representation (Section 4.2). And we take the constructed graph as input of the
multiple models trained in the offline stage. Finally, employing ensemble learning mechanism and considering
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the model consensus, a signal similarity based model fusion strategy will be used for joint location estimation,
achieve final location refinement (Section 4.4).

4 DETAILED DESIGN
In this section, we elaborate the detailed design of proposed GC-Locwhich takes advantage of graph representation
to realize collaborative indoor localization between multiple users or multiple timestamp of single user. We
first illustrate the overall structure of GC-Loc in Section 4.1. Then, we present the generation process of the
graph representations for collaborative localization in Section 4.2, including both the graph representations
for multi-user collaboration and self-collaboration of single user, respectively. And the detailed construction of
GAT-based localization network is presented in Section 4.3. Finally, we elaborate the proposed location refinement
strategy in Section 4.4.
Table 1 lists the major symbols and notations used in this paper.

4.1 Overview
Since the discrete signal fingerprints lack sufficient feature discernibility and the continuous signal sequences
usually suffer from the high time overhead for signal sequence collection and path constraints, GC-Loc employs
the collaboration mechanism to integrate multiple discrete signal fingerprints with relative relationships to
achieve collaborative indoor localization. While GC-Loc takes discrete signal fingerprints as input, it avoids the
high time overhead for signal sequence collection. Meanwhile, it fuses multiple discrete signal fingerprints (from
multiple users/timestamps) to enhance the feature discernibility for accurate localization.

The overall framework of GC-Loc is illustrated in Fig. 3. Considering the most common application scenarios of
indoor positioning and inspired by the collaborationmechanism, we first propose an adaptive graph representation
to efficiently integrate multiple discrete signal fingerprints, including the fingerprints from multiple users or the
fingerprints at multiple timestamps from single user. Then we take advantage of state-of-the-art Graph Attention
Network (GAT) as a basic unit to devise a collaborative localization network for accurate location prediction.
Furthermore, we bring in the residual structure and design a hierarchical attention mechanism to further improve
the accuracy in complex indoor scenes. In addition, we take advantage of ensemble learning mechanism and
devise a location refinement strategy based on model consensus, through which GC-Loc is able to effectively
reduce the impact of random noise and signal outliers.
More specifically, proposed GC-Loc consists of three major parts as follows.
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1) Adaptive Graph Representation Construction. To facilitate the efficient collaborative localization, we first
utilize multiple discrete signal fingerprints and their relative relationships to construct an adaptive graph
representation, in which the vertexes indicate the discrete signal fingerprints and the edge denotes the distance
between the corresponding two vertexes. Thereinto, the distance measurement (i.e. the edge generation in the
graph) is based on the relative Bluetooth RSSI observations (for multiple users collaboration) or the IMU-based
displacement estimation (for multiple timestamp collaboration of single user). And the details of the adaptive
graph representation are elaborated in Section 4.2.
2) GAT-based Collaborative Indoor Localization. As the proposed adaptive graph representation is actually

Non-Euclidean structure data, we intuitively utilize state-of-the-art graph attention network (GAT) to extract
the location clues for localization. Considering the complex and diverse indoor scenes, we construct a residual
structure when applying multi-layer deep GAT model, which also effectively restrains the over smoothing
problem. On this basis, we further devise a hierarchical attention mechanism, in which we take into consideration
the different distance measurements between vertexes so as to fit the actual spatial characteristics of indoor
localization. And we detail the design of proposed network in Section 4.3.
3) Location Refinement with Model Consensus. To restrain the impact of random noise and signal outliers

which are common in practical applications, we take advantage of ensemble learning mechanism and devise a
location refinement strategy with the consensus among ensemble models. To be specific, we first train multiple
independent localization models (based on the proposed localization network) with different settings. Then we
backward consider the signal fingerprints matched with the models’ predictions in geo-tagged signal database,
based on which we further calculate the signal similarity as adaptive weights for the ensemble model fusion,
achieving location refinement. And the details are presented in Section 4.4

4.2 Adaptive Graph Representation Construction
As aforementioned, since the most common scenarios of indoor localization applications are usually with high
crowd density, it makes the collaborative localization feasible. And the collaboration between multiple users
provides another way to achieve accurate localization with the multiple discrete signal fingerprints, avoiding
the high time overhead for long signal sequence collection. Moreover, even facing the indoor scenes where
no multiple users available, the collaboration can be still applied among the multiple timestamps of one single
user. To facilitate the efficient collaboration, we construct an adaptive graph representation which is not only
applicable to the collaboration in the indoor scenes with multiple users, but also works well with multi-timestamps’
collaboration for the single user scenes. The construction of proposed adaptive graph representation consists of
the vertex selection and the edge generation as illustrated in Fig. 3.
For the vertex selection of the graph in this paper, we take the collected magnetic signal fingerprints as the

vertexes of the graph, due to magnetic field’s omnipresent distribution, high global stability over time and
strong local signal variations indoors, providing the basic condition for accurate localization. To be specific,
the magnetic field observation reading M𝑑 measured by device’s magnetometer is actually a combination of
the natural geomagnetic field (high signal stability over time) and the magnetic field from the surrounding
environment (distinguish local signal variations).

M𝑑 = M𝑔𝑒𝑜𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑠𝑚 +M𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 , (1)

Meanwhile, the signal reading M𝑑 = [𝑚𝑥 ,𝑚𝑦,𝑚𝑧]𝑇 usually consists of values at three axes (𝑋,𝑌 and 𝑍 ) in
the device coordinate system, which is directly related to the device holding pose. This means that the directly
collected magnetic signal observations with different holding pose may be different from each other even in
same location, which will lead to localization failure. To address this, we propose to transform the collected
magnetic field vector M𝑑 in device coordinate system to the vector in a uniform coordinate system based on the
offset of the device. More specifically, we assume M𝑒 denotes the magnetic field vector at same location in earth
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coordinate system. ThenM𝑑 can be regarded as the transform by device rotated in roll 𝜙 , pitch 𝜃 and yaw𝜓 from
M𝑒 . And the relationship between M𝑑 and M𝑒 can be defined as Equation 2 in absence of noise.

M𝑑 = R𝑥 (𝜙)R𝑦 (𝜃 )R𝑧 (𝜓 )M𝑒 , (2)

where R𝑥 (𝜙),R𝑦 (𝜃 ) and R𝑧 (𝜓 ) are the rotation matrices. And the roll angle 𝜙 , pitch angle 𝜃 and yaw angle 𝜓
can be obtained from the collected 3-axis acceleration sensor readings which denote as A = [𝑎𝑥 , 𝑏𝑦, 𝑐𝑧]𝑇 . And
compared with the solution that uses single-axis data to calculate the angles, employing multi-axis data and
calculating through inverse tangent can eliminate the influence of the deviation angle [40, 48]. Specifically, 𝜙, 𝜃
and𝜓 are calculated as following.

𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛(
𝑎𝑦

𝑎𝑧
), (3)

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑎𝑥
𝑎𝑧

), (4)

𝜓 = 𝑎𝑟𝑐𝑡𝑎𝑛(
𝑎𝑦𝑐𝑜𝑠𝜙 − 𝑎𝑧𝑠𝑖𝑛𝜃

𝑎𝑥𝑐𝑜𝑠𝜃 + 𝑎𝑦𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 + 𝑎𝑧𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙
). (5)

With the calculated rotation angles, we can obtain the rotation matrices from the device coordinate system to
the earth coordinate system, which is defined as following.

R𝑥 (𝜙),R𝑦 (𝜃 ),R𝑧 (𝜓 ) =

𝑐𝑜𝑠𝜓 −𝑠𝑖𝑛𝜓 0
𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 0

0 0 1


−1

,


𝑐𝑜𝑠𝜃 0 𝑠𝑖𝑛𝜃

0 1 0
−𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃


−1

,


1 0 0
0 𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜙
0 𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙


−1

, (6)

Finally, according to the Equation 2, we can obtain the transformed magnetic field vector M𝑒 in uniform earth
coordinate system with the aid of the rotation matrices.

M𝑒 = [𝑚𝑥 ,𝑚𝑦,𝑚𝑧]𝑇 , (7)

In addition, to further augment the discernibility of the magnetic signal, we also take the dimensionless
magnitude of M𝑒 into consideration. And the magnetic signal fingerprint we used in this paper is defined as the
Equation 8.

M = [M𝑒 , | |M𝑒 | |2]𝑇 = [𝑚𝑥 ,𝑚𝑦,𝑚𝑧, | |M𝑒 | |2]𝑇 , (8)
where | | · | |2 denotes 𝐿2 norm operation.

For the edge generation of the graph, the traditional graph structure usually places emphasis on the connectivity
judgment among the vertexes for message passing, and it usually has no fixed shape. However, the localization
applications usually indicate a certain degree of spatial distribution characteristics, which is vital for collaborative
localization, especially in the large open indoor scenes. Therefore, different from the traditional graph structure,
we combine the spatial characteristics of the collaborative localization and take the relative distance measurement
between the vertexes (collaborative users or timestamps) into consideration to generate the edges in proposed
adaptive graph representation.

Specifically, although most indoor localization scenes are usually with high crowed density, there are still few
application scenarios where are no multiple users available for collaboration in practice, as illustrate in Fig. 1.
Therefore, we consider these two kinds of application scenarios respectively, and realize a uniform representation
for two types of collaboration, i.e. multiple users collaboration and multiple timestamp collaboration (for single
user scene), which reflect in the edge generation as following.
1) Multiple User Scene. For the common scenes with multiple users available for direct collaboration, we take

advantage of the collected relative Bluetooth RSSI between multiple users to estimate the relative distances.
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Fig. 4. The variation of Bluetooth RSSI with the relative
distance using different devices in a spacious area.
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Fig. 5. The variation of Bluetooth RSSI with the relative
distance using different devices in a narrow corridor.

Then we make use of the distance measurements for the edge generation. Considering the uncertainty of signal
propagation, researchers usually employ the lognormal distribution to reflect the propagation of signal RSSI.
And in this paper, the transformation of the collected Bluetooth RSSI versus the relative distance is defined as a
logarithmic path loss model [50].

𝜂𝑟 (𝑑) = 𝜂0 (𝑑0) − 10𝜆𝑙𝑔( 𝑑
𝑑0

) + 𝛿, (9)

where 𝜂𝑟 (𝑑) denotes the RSSI value at distance 𝑑 from the source, 𝑑0 is the reference distance. 𝜂0 (𝑑0) represents
the collected RSSI value at distance 𝑑0. And parameters 𝜆, 𝛿 are the distance path loss exponent and random noise
respectively, which both follow Gaussian distribution.

However, in the indoor environment, the collected Bluetooth RSSI usually suffers from the reflection, multi-path
effect or shadowing phenomena in practice, which leads to unreliable observations and large errors for the
distance estimation consequently. Therefore, directly utilizing the raw Bluetooth RSSI for distance estimation is
prone to be unreliable. To address this, we devise a two-phase optimization method. Firstly, considering that
the raw RSSI observation at a single timestamp usually fluctuates, we make use of a window of RSSI data (the
observations in 2 seconds) instead of using raw single RSSI directly. On this basis, we further devise a fuzzy
mapping strategy to realize the RSSI-distance transformation. Specifically, we first set a relatively low threshold
to filter out the weak RSSI observation records, since the accuracy of the propagation model usually decreases
with the growth of the relative distance between the devices and the discrimination of RSSI also decreases at
large distance. As shown in Fig. 4 and Fig. 5, the RSSI observations fluctuate and fail to reflect the variations of
the distance when the distance reaches above 5 m. Then instead of directly using the precise distance calculated
based on the filtered RSSI, we further transform these obtained distances into the qualitative fuzzy classifications
(dividing range interval), which is also more consistent with the standard of Bluetooth RSSI application. And we
assign different fixed values for each category (divided range) according to the general standard of Bluetooth
RSSI ranging. Finally, We calculate the distance 𝑑𝑓 used for edge generation in this paper as following.

𝑑𝑓 = 𝑓 (𝑑) + 𝜑, (10)

𝑓 (𝑑) =


𝑣0 𝑑 ∈ (0, 𝑑1],
𝑣1 𝑑 ∈ (𝑑1, 𝑑2],
𝑣2 otherwise,

(11)
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Fig. 6. The design of collaborative indoor localization network.

where 𝑑 represents the distance obtained through Equation 9, 𝜑 is the random variable which follows Gaussian
distribution with the mean of zero. And 𝑓 (·) denotes a segmented fuzzy classification function, in which 𝑑1, 𝑑2
are preset reference distances.

As elaborated above, formultiple user scenes, we utilize the relative Bluetooth RSSI observations amongmultiple
users to realize the distance measurement, then use which to generate the edge of the graph representation for
collaborative localization.

2) Single User Scene. In practice, there are also some scenes without multiple users available for the collaborative
localization. However, the collaboration can be conducted in another different dimension, i.e. the collaboration
among multiple timestamp of single user. Therefore, we propose to utilize the multiple signal fingerprints of
single user, which collected in different timestamp, to construct a special graph for collaboration as illustrated in
Fig. 1. By this strategy, we can unify the different application scenes into an general graph representation and
achieve uniform collaborative indoor localization.

Different from the way of the edge generation in multiple user scenes, we employ IMU sensor measurements to
calculate the distance among multiple signal fingerprints which are ordered, since they are collected at different
timestamp by a single user in moving. Although IMU based measurements usually suffer from the cumulative
errors, we employ IMU data for relative displacement estimation thus avoiding this problem. For IMU based
displacement estimation, besides the basic step-based methods, there also exists a plenty of approaches [34, 51],
including the recently proposed deep learning based techniques [4] which exhibit good performance in short
displacement estimation. Therefore, we take advantage of state-of-the-art IONet [4] to estimation the displacement
between multiple timestamp, then use this distance to generate the edge of the graph.
To sum up, we construct an adaptive graph representation for collaborative indoor localization, which is

general for different indoor scenes.

4.3 Optimized-GAT Based Collaborative Indoor Localization
In this section, we elaborate the core design of proposed collaborative indoor localization network, as illustrated
in Fig. 6. We first present the optimized GAT model in Section 4.3.1. Then we detail the designed hierarchical
attention mechanism in Section 4.3.2.
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4.3.1 Optimized-GAT Model. Based on the constructed graph representation, we intuitively consider employing
the recently proposed state-of-the-art graph learning techniques to extract the features for collaborative localiza-
tion. For indoor localization, the propagation or distribution of the localization signals are usually fixed unless
the indoor environment changes, which is the important foundation of fingerprint-based indoor localization.
Therefore, in a specific indoor scene, although the locations of users and their collaborative relationships (relative
distance measurements) are highly dynamic, multiple signal fingerprints collected at specific positions (at a
specific timestamp) and the corresponding interrelations are usually static. That means users’ locations and their
collaborative relationships are static at a specific timestamp of the dynamic variation. Therefore, although graph
learning is originally suitable for the problems that nodes and edges are relatively static, it can also work for
dynamic indoor localization at a static point-in-time.

More specifically, as the analysis in Section 4.2, the discrete magnetic signal fingerprints at different positions
may be the same or similar. This means that two vertexes with different distances from the target one in the
graph may have same fingerprint features in collaboration. If the basic GCN is directly applied (the edge weights
in the graph are uniform distribution), the feature confusion and ambiguity may occur in collaboration, leading
to the degradation of network performance. Compared with GCN, GAT further considers the weight of the edges
and brings in attention mechanism to generate adaptive weights of the edges for feature aggregation in the graph.
On the one hand, setting weight for edges is more consistent with the characteristics of collaborative indoor
localization problem. On the other hand, adaptive attention mechanism helps improving the adaptability for
complex and diverse indoor environment (different distributions of signals). Therefore, we utilize GAT instead of
GCN as a basic unit to construct the collaborative localization network.
Different from original GAT, we take the distance between vertexes into consideration when generating

attention weights. To be specific, we denote the vertex embedding (vertex feature) as h𝑖 for vertex 𝑖 in the
constructed graph. Then for each iteration of the message passing in the graph, the vertex features will be updated
as following.

y𝑠𝑖 = W𝑠h𝑠𝑖 , (12)

𝑒𝑠𝑖 𝑗 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈

(
𝜉 (𝑑𝑖 𝑗 ) (b𝑠𝑇 (y𝑠𝑖 | |y𝑠𝑗 ))

)
, (13)

𝜔𝑠𝑖 𝑗 =
𝑒𝑥𝑝 (𝑒𝑠𝑖 𝑗 )∑

𝑘∈𝑁 (𝑖) 𝑒𝑥𝑝 (𝑒𝑠𝑖𝑘 )
, (14)

h𝑠+1
𝑖 = 𝜎

©«
∑
𝑗 ∈𝑁 (𝑖)

𝜔𝑠𝑖 𝑗y
𝑠
𝑖

ª®¬ , (15)

where y𝑖 represents the linear transformation from h𝑖 , and 𝑁 denotes the number of the vertexes in the graph.
W, b are the learnable parameters. Specially, 𝑑𝑖 𝑗 represents the distance measurement between vertex 𝑖 and
𝑗 , which is detailed in Section 4.2. And 𝜉 (·) denotes the transform function which follows standard Gaussian
distribution.

𝜉 (𝑑) = 1
√

2𝜋
𝑒𝑥𝑝 (−𝑑

2

2
), (16)

With optimized GAT which further fits the characteristic of collaborative localization problem, we are able to
effectively extract the features from the graph for accurate localization.

4.3.2 Hierarchical Attention Mechanism. In order to increase the expression ability of the proposed collaborative
localization network when facing the complex indoor scenes, we first bring in the multi-head attention setting and
the residual structure. Then combined with optimized GAT, we further devise a hierarchical attention mechanism
as illustrated in Fig. 6. Specifically, the designed hierarchical attentions include two levels, i.e. the multi-head
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attention in the optimized GAT unit and the multi-layer attention among the residual structure, which are
elaborated in detail as follows.

1) Multi-head Attention. Similar to multi-channel in convolutional neural networks, we first bring in multi-head
attention in the optimized GAT unit to enrich the model’s capabilities and stabilize the training process. Each
head of the attention has its own parameters and we integrate the outputs of multi-head attention by the way of
concatenation. With the multi-head attention mechanism, the vertex feature update of the optimized GAT in
Equation 15 will be transformed into Equation 17.

h𝑠+1
𝑖 = | | (𝑘=1,...,𝐾)𝜎

©«
∑
𝑗 ∈𝑁 (𝑖)

𝜔𝑠𝑘𝑖 𝑗 W
𝑠𝑘h𝑠𝑖

ª®¬ , (17)

where the𝐾 denotes the number of the head in multi-head attention, and | | represents the concatenation operation
among the multiple outputs.
2) Multi-layer Attention. As the indoor scenes are complex and diverse, the network usually needs to stack

more layers to ensure localization performance. While the graph based neural networks usually base on the
message passing mechanism among the connected vertexes, they usually suffer from the over smoothing problem
(all vertex features tend to be the same) when the depth of the network increases. To address this, we further
employ the residual structure in the proposed network. Meanwhile, we also set up a multi-layer attention among
the outputs of different layers in residual structure, considering that the features in different depth of the network
may have different importance distribution for different indoor scenes.
To be specific, we construct a deep residual network with the layers of num 𝑄 , based on the optimized GAT

with multi-head attention. Then the devised residual structure can be defined as follows.

h𝑠+1
𝑖 = 𝜎

(
1

𝑄 + 1

(
𝑄∑
𝑞=1

𝑤
𝑞

𝑖
𝐺𝑞 (h𝑠𝑖 ) +𝑤0

𝑖Wh𝑠𝑖

))
, (18)

𝑤
𝑞

𝑖
|𝑞=0,1,...,𝑄 = w𝑖 = U𝑖h𝑠𝑖 , (19)

where𝐺 (·) represents the update function which is elaborated in Equation 12 - 17, and𝐺 (·)𝑞 denotes the function
which outputs the result for stacked 𝑞 layers.𝑤 is the adaptive weight.

Finally, we construct the optimized GAT-based network with devised hierarchical attentions, utilizing which
to extract the features from the adaptive graph representation of the multiple magnetic fingerprints, and achieve
accurate collaborative localization.

4.4 Location Refinement with Model Consensus
In this section, we present the location refinement strategy based on the consensus of ensemble models. We
first discuss the motivation of location refinement in Section 4.4.1, then elaborate the detailed design of location
refinement in Section 4.4.2.

4.4.1 Motivations. In practice, the random environment noise and signal outliers in the signal fingerprint
collection are usually inevitable, suffering from which the deep learning based approaches are generally difficult
to obtain a unique and stable optimization model through the regular model training. For a certain deep learning
task, sometimes we can even obtain several different models which may give different predictions after the
different training, but they almost have same accuracy on the training dataset, causing the uncertainty of the
model training and the instability of prediction. And the researchers have demonstrated that the single model
obtained by regular training usually has limited generalization ability and robustness. And the caused random
errors sometime will lead to large deviation and final failure of the prediction consequently.
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Algorithm 1: Signal similarity based ensemble model fusion.
Data:

𝐷 representing the pre-established signal fingerprint databse;
{𝑚𝑜𝑑𝑒𝑙 𝑗 | 𝑗=1,2,...,𝑇 } representing the 𝑇 models trained with different initial parameters;

Input:
𝑆𝑔 = {g1, g2, ...} representing the set of the graph represention for collaborative localiztion, in
which g𝑖 representing the input graph that contains 𝑁 vertexes;

Output:
𝑆𝑙 = {L1, L2, ...} corresponding to 𝑆𝑔 , in which L𝑖 represents the final prediction result that contains
𝑁 locations.

1 for each graph g in 𝑆𝑔 do
2 denote the graph g as g𝑖 ;
3 for 𝑗 in range(1,𝑇 + 1) do
4 Obtain the prediction L𝑗

𝑖
= {l𝑗

𝑖
|𝑖=1,2,...,𝑁 } of𝑚𝑜𝑑𝑒𝑙 𝑗 for input g𝑖 ;

5 Find the matched signal fingperint in 𝐷 with the predicted locations L𝑗
𝑖
as Equation 21;

6 Calculate the weight for𝑚𝑜𝑑𝑒𝑙 𝑗 with collected and matched signal fingerprints as Equation 22, 23 ;
7 Fuse the predictions of 𝑇 models with the calculated weights as Equation 24 ;
8 Obtain the final prediction result L𝑖 for input graph g𝑖 ;
9 final;

10 return Fusion prediction results 𝑆𝑙 = {L1, L2, ...}

To tackle the above problem, we take advantage of ensemble learning mechanism and propose a multi-model
joint location prediction strategy. As discussed above, due to the existence of signal random noise and outliers in
the training data, we can obtain multiple independent models through different training settings based on the
proposed network. After training convergence, these models almost have same accuracy on training dataset but
have different sensitivity to the random noise and signal outliers. Then we can integrate the predictions of all
these independent models and make a vote for final location estimation. By this way, we are able to effectively
reduce the impact of the problem that a single location prediction model is prone to random errors. And the
underlying idea is that even if one single sub-model incurs large random deviations, other sub-models can correct
the error back.

Specifically, the initial parameters settings of training for ensemble models are different. For the layers of each
model, we set the initial parameters (denoted as 𝑃 ) following Gaussian distribution:

𝑃 ∼ 𝑁 (𝜇, 𝜚 2), (20)

where 𝜇 ∈ [−1, 1] and 𝜚 2 ∈ (0, 10], and they are random selected from the range for each model.

4.4.2 Signal Similarity Based Ensemble Model Fusion. Through the ensemble learning method, we can obtain
multiple independent models for localization. And we further devise a signal similarity based model fusion
strategy to integrate the prediction of these models. For adaption and robustness consideration, we first take
the predictions (locations) as basis to backward find the corresponding signal fingerprints in the pre-established
geo-tagged database. Then compared with the currently collected signal fingerprints (the input of the localization
model), we calculate the similarity between them as the fusion weights. Finally, we use the normalized weights
as attention to fuse the prediction of ensemble models for final location estimation.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 4, Article 165. Publication date: December 2022.



GC-Loc: A Graph Attention Based Framework for Collaborative Indoor Localization Using Infrastructure-free Signals • 165:15

Table 2. Baseline training parameters in experiments.

Parameters Value
Iterations 600
Mini-batch Size 30000
Initial Learning Rate 0.005
Learning Rate Update Interval 20
Weight Decay 5e-4

More specifically, as presented in Algorithm 1, we assume that there are𝑇 trained models through the ensemble
learning method. Then for an input graph representation denoted as g which includes 𝑁 vertexes, each of
the ensemble models (trained based on proposed collaborative localization network) will give a prediction
result including 𝑁 locations corresponding to 𝑁 vertexes. And the process of proposed ensemble model fusion
localization for vertex 𝑖 is defined as follows:

M̃𝑗

𝑖
= 𝜏 (l𝑗

𝑖
), (21)

𝑧
𝑗

𝑖
= | |M𝑖 − M̃𝑗

𝑖
| |2 +

M𝑖 · M̃𝑗

𝑖

| |M𝑖 | |2 × ||M̃𝑗

𝑖
| |2
, (22)

𝑧
𝑗

𝑖
=

𝑒𝑥𝑝 (𝑧 𝑗
𝑖
)∑𝑁

𝑘=1 𝑒𝑥𝑝 (𝑧𝑘𝑖 )
, (23)

l𝑖 =
𝑇∑
𝑗=1

𝑧
𝑗

𝑖
l𝑗
𝑖

(24)

where l𝑗
𝑖
denotes the predicted location of 𝑗-th model for the vertex 𝑖 . And 𝜏 (·) represents the transform function

from location to signal fingerprint in the database.M𝑖 , M̃
𝑗

𝑖
are the collected magnetic fingerprint at vertex 𝑖 and

transformed magnetic fingerprint from the location l𝑗
𝑖
, respectively. 𝑧 𝑗

𝑖
denotes the signal similarity calculation

which includes both Euclidean distance and cosine similarity. And l𝑖 represents the final estimated location for
the vertex 𝑖 of the input graph.
Finally, taking the signal similarity calculations as the weights for multiple ensemble models’ fusion, we can

obtain more accurate and robust location predictions for all vertexes in the graph.

5 ILLUSTRATIVE EXPERIMENTAL RESULTS
In this section, we evaluate the performance of proposed GC-Loc with extensive experiments. Specifically, we
first introduce the related experimental settings in Section 5.1. Then we present the comparison schemes and the
evaluation metrics in Section 5.2. Finally, the detailed experimental results and the corresponding analysis are
elaborated in Section 5.3.

5.1 Experimental Settings
For the localization performance evaluation, we have conducted experiments in three trial sites, including an
office area covering around 80𝑚2, a spacious hall covering around 200𝑚2 and a whole floor of lab building
covering around 2800𝑚2, and the floorplans are shown in Fig. 7. The other detailed experimental settings are
presented as follows, including the implement of GC-Loc, the dataset generation and the details of model training
settings.
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(b) Spacious hall.(a) Office area.

(c) The whole floor 5 of lab building.

70 m

40 m

33 m10 m

6 m8 m

Fig. 7. The floorplan of three trial sites (the red dots represent the reference points).

5.1.1 The Implement of GC-Loc. To evaluate the performance of GC-Loc in practice, we have implemented the
proposed GC-Loc as a Client-Server localization system that mainly consists of an application on mobile device
and a backend program on the server. And the client application is developed based on Android platform and can
be installed on Android devices with common Bluetooth, IMU sensor and magnetometer. The backend program
which utilizes the pre-trained model for location calculation runs on a Ubuntu 16.04 server with two Intel Xeon
Platinum 8375c CPU, 256 GB system memory and four Nvidia RTX 3090 GPU cards. And the localization model
training is also conducted on this server.
To be specific, the details of the implement the Client-Server localization system are as follows.
Client application. The implemented client application is mainly used for signal data collection and data

backhaul. And collected signal data include magnetic field observations, relative Bluetooth RSSI scanning results
and the IMU sensor readings. The sensor data sampling frequency is set to 50 Hz. Besides, the application also
records the timestamp of each collection. For stable data backhaul, we set a buffer mechanism and the currently
collected signal data is returned once per second. Since the transmitted data is all text data and the data transmitted
per second is less than 2 KB, the data transmission time can be ignored.
Server program. The deployed server program first receives the collected signal data from the client. Then the

collected raw data will be pre-processed into adaptive graph representation according to different collaborative
mode as elaborated in Section 4.2. Taking the constructed graph as input, the program utilizes the pre-trained
collaborative localization model to calculate the locations corresponding to each vertex in the graph, finally
achieving accurate collaborative localization.

5.1.2 Dataset and Model Training. For the pre-prepared model training in offline stage, we first establish the
training database of the constructed graph, as elaborated in Algorithm 2. Specifically, the surveyors first collect
the magnetic signal observations at all pre-set reference points (the interval distance of reference points is
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Algorithm 2: The generation of the graph dataset.
Data:

𝐷 representing the pre-collected magnetic fingerprint databse in an indoor area;
Input:

𝑁 representing the number of the fingerprints in the graph for collaboration ;
𝑅 representing the number of graph in the database to be generated ;

Output:
𝐷𝑔 = {g1, g2, ...g𝑅} representing the generated graph database with the size of 𝑅;

1 Initialize 𝐷𝑔 = {}, set to empty ;
2 Transform the database 𝐷 into a list of labeled magnetic fingerprints, denoted as 𝐷𝑙𝑖𝑠𝑡 ;
3 Calculate all combinations of the list selecting 𝑁 elements from 𝐷𝑙𝑖𝑠𝑡 , denoted as C ;
4 Randomly select 𝑅 combinations from C, denoted as C𝑅 ;
5 Initialize 𝑐𝑜𝑢𝑛𝑡 = 0, the number of generated graphs;
6 for each combination 𝑐𝑖 in C𝑅 do
7 𝑐𝑖 consists of 𝑁 magnetic fingerprints {M1,M2, ...M𝑁 } with labels {l1, l2, ..., l𝑁 } ;
8 Calculate the distances among {M1,M2, ...M𝑁 } based on corresponding locations {l1, l2, ..., l𝑁 } ;
9 Generate adjacent matrix of the fingerprints (the vertexes), as Equation 10 and 11 ;

10 Obtain the graph g𝑖 consists of {M1,M2, ...M𝑁 } with the generted adjacent matrix ;
11 if g𝑖 is a connected graph then
12 Append the generated graph g𝑖 into 𝐷𝑔 ;
13 𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 + 1 ;

14 if 𝑙𝑒𝑛(𝐷𝑔) < 𝑅 then
15 𝑅 = 𝑅 − 𝑐𝑜𝑢𝑛𝑡 ;
16 Then jump to Step 4 ;
17 final;
18 return The graph database 𝐷𝑔 = {g1, g2, ...g𝑅}

1.2𝑚) in the target indoor areas and label the collected magnetic fingerprints with corresponding locations,
constructing a geo-tagged magnetic signal fingerprint database. Based on the constructed fingerprint database,
we first generate the adaptive graph representation used for collaborative localization. Then through multiple
iterations, we establish the graph dataset for the model training, each element in which contains 𝑁 vertexes (the
magnetic fingerprints) and the corresponding adjacent matrix of the vertexes, and the label of the element is
consists of 𝑁 locations (where the magnetic fingerprints are collected) corresponding to the vertexes in the graph.
Besides the training dataset, we also construct another independent test graph dataset in which the vertexes in
each element are randomly selected, then we conduct simulated experiments on this test dataset to evaluate the
performance of proposed model.
Based on the generated graph dataset, we train the model for collaborative indoor localization, and baseline

training parameters are presented in Table 2. Concretely, PyTorch is adapted as the deep learning framework for
the model implement and training in experiments and the deep network’s optimizer is set as Adam. And the
loss function is defined as following, which considers both Euclidean distance and cosine similarity between the
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prediction location and ground truth.

𝜁 (l𝑝 , l𝑔) = | |l𝑝 − l𝑔 | |2 +
l𝑝 · l𝑔

| |l𝑝 | |2 × ||l𝑔 | |2
(25)

where l𝑝 , l𝑔 denote the prediction location and ground truth location respectively. And | | · | | represents the 𝐿2
norm operation.
Besides, since the distribution of the magnetic signal is highly related to the indoor environment (building

structure, construction material and other ferromagnetic objects) unlike electronic signals that have specific
propagation mode, different buildings usually have different signal features and distributions. Therefore, it needs
to re-train the model when applied in a different building or scene. Fortunately, benefitting from the stability of
magnetism, the model training usually only needs to be conducted once for a specific building.

5.2 Comparison Schemes and Evaluation Metrics
To evaluate the performance of proposed GC-Loc and illustrate its superiority with collaboration mechanism, we
take the following indoor localization approaches as comparison schemes.

• GCN-Loc [43] proposes to utilize the graph structure to model the collaborative relationship, then takes
advantage of GCN to extract the features from the collected signal RSSI fingerprints, then uses a multi-layer
perceptron (MLP) for localization.

• DNN-Loc [18] utilizes the Wi-Fi fingerprints as input and construct a Deep Neural Networks (DNN) for
location prediction. In this paper, we build the proposed DNN structure, but use the magnetic fingerprint
as input to keep consistent with other methods.

• W-kNN [37] devises an improved weighted K-nearest neighbor algorithm for fingerprint-based indoor
localization. And the approach considers both the spatial distance and physical distance of RSSI fingerprints
for more accurate localization.

In addition, we have also conducted the ablation experiments to evaluate the effectiveness and contribution of
the devised modules/mechanisms in GC-Loc. Specifically, we design several variants of proposed GC-Loc for
comparison as following.

• Basic-GAT : Without the optimization and the customization for collaborative localization problems (Sec-
tion 4.3.1), we directly employ original GAT [45] for the collaborative localization.

• GC-Loc-w/o attention: To evaluate the contribution of the devised attention mechanism (Section 4.3.2), we
remove the attention settings from the proposed GC-Loc for comparison.

• GC-Loc-w/o residual: Removing the constructed residual structure among multiple layers in GC-Loc and
conducting comparison experiments, we evaluate the effectiveness of the residual structure.

Considering the relationships of the collaborative localization, we take the average error of the localization
results (the predicted locations of all participants in collaboration) as the error for this collaboration. And we
utilize the overall mean localization error as the metric in experiments. Specifically, assume we have 𝑅 test
cases, and each is a constructed graph, denoted as g𝑖 , which contains 𝑁 vertexes and corresponding ground
truth locations are {l𝑖1, l𝑖2, ..., l𝑖𝑁 }. With the proposed GC-Loc, we can obtain the prediction locations, denoted as
{l̂𝑖1, l̂𝑖2, ..., l̂𝑖𝑁 }. Then the overall mean localization error 𝜖 for collaboration can be defined as follows:

𝜖 =
1
𝑅

𝑅∑
𝑖=1

(
1
𝑁

𝑁∑
𝑛=1

| |l̂𝑖𝑛 − l𝑖𝑛 | |2

)
, (26)

where | | · | |2 denotes 𝐿2 norm.
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Fig. 8. Cumulative distribution function of indoor localiza-
tion error with different approaches in the spacious hall.
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Fig. 9. Cumulative distribution function of indoor localiza-
tion error with different approaches in the office area.
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Fig. 10. Cumulative distribution function of indoor localiza-
tion error with different approaches in the lab building.
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Fig. 11. Cumulative distribution function of indoor localiza-
tion error with the variants of GC-Loc in spacious hall.

5.3 Experimental Results
To evaluate the performance of proposed GC-Loc, we have conducted extensive experiments in three different
trial sites, i.e. an office area, a spacious hall and a lab building. Fig. 8, Fig. 9 and Fig. 10 present the CDF of
localization errors in the office area, the spacious hall and the lab building, respectively. And Table 3 shows the
mean localization error of GC-Loc and competing methods. The results demonstrate that GC-Loc outperforms the
competing schemes and achieves accurate collaboration. Compared with W-kNN and DNN-Loc, GC-Loc utilizes a
more efficient structure to extract the location features, thus achieving significant improvement. Meanwhile, GC-
Loc brings in the distance measurement for collaborative relationship construction, which fits the characteristics
of indoor localization problem, so it outperforms the basic GCN-Loc which fails to consider the weights between
multiple users. Particularly, comparing the results in Fig. 8 and Fig. 9, we find that GC-Loc performs better in
spacious hall. This is because the office area usually has more interference sources, leading to the signal collection
with noise and large deviation in measurements. And the spacious hall has less ambient noise interference, which
provides a relative stable environment for localization. Meanwhile, the results in lab building as presented in
Fig. 10 show the superiority of GC-Loc in large area, achieving higher improvement than that in the other two
trial sites, which mainly benefits from the efficient collaborative feature aggregation of GC-Loc.
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Fig. 12. Cumulative distribution function of indoor localiza-
tion error with the variants of GC-Loc in the office area.
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Fig. 13. Cumulative distribution function of indoor localiza-
tion error with the variants of GC-Loc in the lab building.

Table 3. Mean localization error versus different approach in three trial sites (m).

Approach
Trial site Office area Spacious hall Lab building

GC-Loc 1.49 0.73 2.37
GC-Loc-w/o residual 1.75 1.1 3.35
GC-Loc-w/o attention 1.86 1.08 3.14
Basic-GAT 2.03 1.43 3.93
GCN-Loc 2.61 2.32 4.55
DNN-Loc 3.52 5.8 11.47
W-kNN 2.93 4.39 7.58

In addition, we have also conducted the ablation experiments to evaluate the effectiveness of the devised
modules/mechanisms. Fig. 11, Fig. 12, Fig.13 show the CDF of localization errors with the variants of GC-Loc
(Section 5.2) in the office area, the spacious hall and the lab building, respectively. And the mean localization error
of GC-Loc and its variants are presented in Table 3. The ablation experiment results demonstrate the effectiveness
of the devised attention mechanism, the constructed residual structure and the optimization/customization on
GAT, with which GC-Loc can achieve better performance. Particularly, we notice that these devised modules or
mechanisms used in GC-Loc make higher enhancement in the spacious hall and the lab building than that in
the office area, as shown in Table 3. This is mainly because that the spacious hall and the lab building are larger
than the office area and the indoor environment is more similar so that the signal ambiguity is more common,
which provides a platform for these devised modules/mechanisms to exert full potentials, thus achieving higher
enhancements.
Furthermore, considering the inevitable environment noise and the signal outliers, we employ ensemble

learning mechanism in GC-Loc. Fig. 14 and Fig. 16 illustrate the mean localization error of different trained
models in spacious hall and office area, respectively. Specifically, we trained 10 localization models with different
initial settings respectively. And suffering from the random noise and signal outliers, these models usually show
different performances as shown in Fig. 14 and Fig. 16. For stable training and robust localization, we integrate
the prediction results of these models for joint location estimation. And a signal similarity based fusion strategy
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Fig. 14. Mean localization error of different trained models
in the spacious hall.
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Fig. 15. Mean localization error when using different num-
ber of models for fusion in the spacious hall.
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Fig. 16. Mean localization error of different trained models
in the office area.
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Fig. 17. Mean localization error when using different num-
ber of models for fusion in the office area.

is proposed for efficient model fusion, as elaborated in Section 4.4. Based on the trained models and the fusion
strategy, we fuse the predictions of multiple models for localization. And Fig. 15 and Fig. 17 illustrate the mean
localization error with model fusion when using different number of trained models for fusion. As we can see,
GC-Loc is able to further improve accuracy and robustness. However, suffering from the limitation of dataset [39],
we notice that the diversity between models becomes smaller with the increase of individual models, and ensemble
learning accuracy is worse. Therefore, we have to choose a optimal value for the number of the models used for
fusion localization. As an example, the optimal number is set to 7 for the office area based on the experimental
results in Fig. 17 to achieve better performance.
Considering the complex and diverse indoor scenes, the deep network is usually used for improving the

expression ability. And we devise multi-layer network and employ attention mechanism among the layers to
enhance the adaptability. To evaluate this, we construct two kinds of graph with distinguish feature, which
represents the different collaborative relationships as presented in Fig. 18. Then we take the constructed graph as
input of the trained localization models to observe the automatically generated attention values in the model.
And the result is presented in Fig. 19. It shows that the distribution of attention values varies with different input
graphs. For graph (a), it represents the common collaborative relationship, in which the average distance among
vertexes is shorter than that in graph (b). And in graph (b), some vertexes are not connected with each other
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(a) Regular graph (b) Special graph

Fig. 18. The diagram of two graphs with distinguish feature, used for evaluating attention settings.
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Fig. 19. The distribution of attention values for different
types of the constructed graph representation.
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Fig. 20. The average time consumption and mean localiza-
tion error with different number of users for collaboration.

directly, so it needs more iterations to pass the message through the intermediate vertexes. Therefore, as shown
in Fig.19, the weight of deep layers for graph (b) is relatively larger than graph (a), which validates the analysis
above. And it also proves the effectiveness of the attention mechanism.

Fig. 20 presents the mean localization error and the average time consumption when taking different number
of users for collaboration. For mean localization error, as we can see, it decreases when using more users
for collaboration. Intuitively, more collaborative users usually provide more feature information to help the
positioning. As shown in Fig. 20 (the orange line), when the number of collaborative users reaches 5, the decrease
of the error slows down. It means that collaborative information is saturated. Meanwhile, more users also mean
more external noise, which will affect the performance of localization. Therefore, to achieve the trade-off, we
usually take 5 users for collaborative indoor localization according to the experimental results. And the number
of collaborative users is also set to 5 in most experiments of this paper.
Since GC-Loc is based on deep learning techniques, it’s an end-to-end system which conducts the training

in prior offline stage and the location prediction in online stage. Therefore, in regard to the system overhead
of GC-Loc, we conduct evaluations from the two aspects mainly, i.e., the offline training cost and the online
localization latency. For offline training, the detailed model training settings are introduced in Section 5.1.2. As
presented in Table 2, the mini-batch size of model training is set to 30000, and we train the model on a NVIDIA
3090 GPU card. During model training, the GPU video memory usage is around 10.26 GB and the average time
overhead for a single batch training is 0.83 s. Although the offline training is time-consuming, it only needs
to be conducted once. And subsequent online localization can continuously come into play without the extra
time-consuming model training. On the other hand, we also evaluate the online localization latency, and Fig. 20
(the purple line) illustrates the average time consumption for a single localization when employing different
number of collaborators. The results show that the time consumption of GC-Loc basically keeps stable even with
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Fig. 21. The distribution of localization error of GC-Loc and
LSTM in single user scene.
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Fig. 22. The variation of train error and test error with itera-
tion during model training.

Table 4. The energy consumption evaluation results of GC-Loc and its individual components (mAh).

Evaluation Item
Duration

5 min 15 min 30 min 45 min

Magnetism scanning 13 42 88 137
Bluetooth scanning 30 102 218 325
IMU data collection 21 70 139 205
Total consumption with GC-Loc 74 210 442 639

the increase of the number of collaborators. The reason is that GC-Loc is based on the graph representation and
its time consumption is largely unaffected by the number of collaborative objects, benefiting from the parallel
processing mechanism among the vertexes in the graph. In addition, since the online calculation latency of
deep learning model is basically independent of the size of database, GC-Loc also outperforms the traditional
matching-based approaches, especially in large indoor scenes.

Despite GC-Loc mainly focuses on the collaboration among multiple users in most common indoor scenes, it
also works well in single user scene, in which the multiple timestamps are employed for collaborative localization.
And for single user scene, we also conduct experiments to compare the performance of GC-Loc and LSTM
which is widely used for sequence-based approaches. Specifically, we use multiple discrete signal fingerprints to
construct "discrete sequence" as input of LSTM model, which keeps consistent with GC-Loc. And by this way, it
also avoids the trajectory or path constraints, especially in large spacious scenes. As shown in Fig.21, GC-Loc
achieves lower localization error and outperforms LSTM by a wide margin, reducing mean error by more than
40%. The results demonstrate the effectiveness of GC-Loc in single user scene.

Fig. 22 illustrates the variation of the mean train error and mean test error during the training iteration. As we
can see, variate trends of train error and test error basically keep coincident with iterations, which demonstrates
the GC-Loc is able to learn effective collaborative features. And the error decreases quickly in the first 100 epochs,
then the decrease slows down. Finally, the model training converges after 600 epochs. So the number of the
training iterations in experiments is set to 600 to achieve trade-off.
As for energy consumption, since GC-Loc is implemented based on Client-Sever mode in which the energy

concerns are usually from the client, we take the power consumption record in the operation system of client
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device for evaluation. In experiments, we evaluate the energy consumption of the simulated localization with
GC-Loc (the total consumption), individual continuous magnetism scanning, individual Bluetooth scanning and
individual IMU sensor data collection, respectively. Specifically, we modify the developed client program to
conduct ablation evaluation and record the energy consumption of each individual component as the criterion.
And the experimental device is HUAWEI MatePad Pro with battery capacity of 7250 mAh. The evaluation results
are presented in Table 4. It shows that more than half portion of the energy consumption comes from Bluetooth
scanning. Since the client program adopts the continuous high-frequency scanning strategy for better localization
performance and has not yet optimized well for energy efficiency, we can adjust the signal sampling frequency to
achieve trade-off in specific real-world application scenarios.

6 DISCUSSIONS
In this paper, we propose a graph attention based framework (i.e. GC-Loc) for collaborative indoor localization,
which utilizes multiple discrete signal fingerprints and can be applied to both multi-user scenario and single-user
scenario. We have conducted extensive experiments in three trial sites and achieved efficient feature aggregation
and accurate localization. Nevertheless, a few practical challenges (not the main focus of this paper) remain to be
addressed or further optimized.

• Device calibration through crowdsourcing. In practice, the various devices or sensors usually have different
calibrations for signal observation reading, e.g., the magnitude of magnetic field intensity obtained from
different devices may be inconsistent [27], which will affect the performance of most fingerprint-based
approaches. In GC-Loc, we have to calibrate different devices to a uniform standard before conducting
localization. Specifically, we first construct a standard signal fingerprint database. Then at a specific
location (preset or obtained with other assists), through the alignment of collected signal fingerprint and
corresponding one in the construct standard database, we can calculate the calibration parameter for the
current device. And for the devices of the same model, the calibration only needs to be conducted once and
the calibration parameters will be recorded for the subsequent invocations. Considering the wide variety
of devices and sensors in practice, the calibration may be time-consuming and labor-intensive. But recent
study on crowdsourcing techniques [11] can provide an efficient solution. Since the above-mentioned
calibration is a relative simple task, it can easily leverage or be integrated into the existing crowdsourcing
approaches.

• Data security and privacy protection. As indoor localization empowers a variety of mobile applications, the
potential privacy and security problems have attracted more and more attentions. The proposed GC-Loc
requires collecting and sending the magnetic field measurements, the Bluetooth RSSI measurements and
the IMU measurements back to the server for the collaborative location estimation. Since a lot of personal
information can be inferred from the sensor data, the more types of data are transmitted to the server,
the easier it is for user privacy to be leaked. Specifically, the challenge mainly lies on two aspects, i.e.,
the server data security and the users’ location privacy. For data security, the encryption techniques (e.g.
homomorphic encryption and fuzzy logic) can be used to address the concerns since the research in the
related fields is very mature. For the users’ location privacy protection, k-anonymity and differential privacy
techniques are usually taken as effective solutions to guarantee the users’ location privacy in some recent
works [55]. In addition, with the rapid development of software (e.g. PyTorch Mobile, TensorFlow Lite) and
hardware (especially the graphical processing units in mobile smart devices), it’s also possible to explore
the local offline deployment in mobile end devices, by which the privacy data leakage can be addressed to a
certain extent.
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7 CONCLUSION
In this paper, we propose a graph attention based collaborative indoor localization framework, termed GC-Loc,
which utilizes discrete signal fingerprints to achieve accurate and efficient collaborative localization. Specifically,
we first construct an adaptive graph representation to model the collaborative relationships, which is not only
applicable to the collaboration among multiple users, but also works well with multiple timestamps’ collaboration
in the single-user scenes. Then employing state-of-the-art GAT model, we further bring in residual structure
and devise a hierarchical attention mechanism for accurate collaborative localization. Finally, we employ the
model consensus and design a signal similarity based model fusion strategy to enhance the robustness. The
proposed GC-Loc can be easily extended or incorporated into most existing fingerprint-based indoor localization
approaches. In this paper, we take the magnetic signal fingerprints as input to evaluate the performance. And the
extensive experimental results demonstrate the effectiveness of GC-Loc, outperforming the competing schemes
by a wide margin (reducing the mean localization error by more than 42%).
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