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Live streaming service usually delivers the content in mobile edge computing (MEC) to reduce the network latency and save the
backhaul capacity. Considering the limited resources, it is necessary that MEC servers collaborate with each other and form an
overlay to realize more efficient delivery. The critical challenge is how to optimize the topology among the servers and allocate
the link capacity so that the cost will be lower with delay constraints. Previous approaches rarely consider server collaborations
for live streaming service, and the scheduling delay is usually ignored in MEC, leading to suboptimal performances. In this
paper, we propose a popularity-guided overlay model which takes the scheduling delay into consideration and utilizes MEC
collaboration to achieve efficient live streaming service. The links and servers are shared among all channel streams and each
stream is pushed from cloud servers to MEC servers via the trees. Considering the optimization problem is NP-hard, we
propose an effective optimization framework called cost optimization for live streaming (COLS) to predict the channel
popularity by a LSTM model with multiscale input data. Finally, we compute topology graph by greedy scheme and allocate
the capacity with convex programming. Experimental results show that the proposed approach achieves higher prediction
accuracy, reducing the capacity cost by more than 40% with an acceptable delay compared with state-of-the-art schemes.

1. Introduction

With the rapid popularization of smart devices, the Internet
traffic has ushered an explosive growth [1], and almost 82%
of all network traffic comes from video traffic [2]. The
increasing traffic puts amounts of pressure on the cloud data
center, bringing more difficulties for the optimization of the
servers [3], especially for some latency-sensitive services,
e.g., live streaming. To address this, mobile edge computing
(MEC) is brought in as a new technology for live streaming
service to reduce the network latency and alleviate the back-
haul capacity [4]. Internet service provider (ISP) places
nearby MEC servers at the network edge so that users can
visit these servers instead of remote cloud servers and get a
better experience. Due to limited resources of a single
MEC server, multiple servers are usually used to collaborate
with each other and form an overlay to deliver the content
[5]. The cost of deploying such an overlay mainly comes
from the link capacity cost (If an overlay is firstly deployed,
it has another cost called Server Cost to purchase servers’

hardware. Compared with the link capacity cost, Server Cost
is a one-time deployment cost, so we ignore it in this paper.
We think that servers’ hardware resources, computing
capacities and upload capacities, are enough and will not
be an optimization bottleneck). While the link capacity is
higher, the source-to-end delay which is defined as the time
elapsed from the cloud server to the MEC server is lower but
the cost increases rapidly. A critical problem is how to con-
struct the topological graph among these servers and allocate
the bandwidth capacity to each link so that the cost will be
minimum while the delay is still under a certain bound.

Failed to address the problem above, existing works
mainly suffer from following deficiencies.

In MEC environment, most works pay attention to the
optimization for static contents [6, 7], such as video on
demand (VoD) streaming or image caching, which are delay
insensitive. These approaches usually fail to address the
rationality of MEC application providers or have different
objective functions, leading to improper results in cost opti-
mization for live streaming.
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Some works optimize the resource allocation by predict-
ing the popularity of contents [8–10], considering that a few
popular videos usually contribute to most of the bandwidth
consumption [11]. However, suffering from the similar
reason that these models usually focus on the prediction of
static contents, it is still hard to meet the real-time require-
ment of live streaming.

As a considerable impact factor in optimization strategy,
server’s scheduling delay is usually ignored or not modeled
sufficiently in most of existing works [12–14], which renders
these models’ inaccuracy and inefficiency in reality.

To tackle above challenges, we construct a multisource
multichannel overlay model which focuses on the popularity
prediction, topology generation, and link bandwidth alloca-
tion. We combine the deep neural network and the mathe-
matical model to optimize the overlay deployment cost, i.e.,
we first predict the popularity of live channel with LSTM
model and identify which channel the MEC server should
subscribe to. Then, we compute the topology graph and allo-
cate the link capacity bymathematical optimization methods.

In the proposed approach, each channel stream has het-
erogeneous rate which is constant in transmission, and all
packet lengths are equal (the channel rate and the packet
length may vary in reality, but they are not variables in our
model and do not affect the problem solving. Hence, we sim-
plify them.). Without loss of generality, we suppose that a
channel can only originate from one source, and a cloud
server could be the source of multiple channels. A subscriber
(defined as a MEC server which subscribes to channels)
could receive a channel stream from a cloud server, another
MEC server subscribing to the same channel or a helper (a
helper denotes a MEC server which forwards unsubscribed
channel streams.). Therefore, there are some nodes (helpers)
that can be included or excluded in a channel transporting
path, and all channel trees are combined into a mesh.

In practice, the link cost is usually charged by the maxi-
mum rented capacity. And the source-to-end delay actually
consists of four type delays, e.g., link propagation delay,
server transmission delay, server processing delay, and
server queuing delay. More specifically, the link propagation
delay is the time that a packet travels over a physical connec-
tion, usually reflected by the round-trip time. And the server
processing delay can be omitted while the computing
resource is sufficient as aforementioned. Then, we combine
server transmission delay and server queuing delay into
server scheduling delay, defined as the used time that a
packet is kept on a server until it is completely transmitted
out. In this way, the source-to-end delay consists of link
propagation delay and server scheduling delay. As a result,
a high scheduling delay will cause network congestion,
which should be taken into consideration by all means.

As presented in Figure 1, it depicts an example of pro-
posed overlay model where S1, S2 are cloud (source) servers
and S3–S6 are MEC servers in different regions. Cost optimi-
zation is carried out by a central optimizer which continu-
ously collects network parameters and sends control
message flows. The workflow is shown in Figure 2. The opti-
mizer predicts the popularity of live channels and decides
the subscribed list of each MEC server. Based on obtained

information and the delay requirements, the optimizer com-
putes a topology graph with least deployment cost. Finally,
the optimizer informs MEC servers of the optimized infor-
mation, i.e., the subscribed list, the topology graph, and the
link capacity. Once MEC servers receive the control mes-
sage, they collaborate with each other and form an overlay
to deliver live channel A to server S3 and S5, channel B to
S4, S5, and S6. In this overlay, channel stream A is pushed
from S1 to S5 with S4 forwarding. S4 does not subscribe to
channel A but forward its data as a helper. The link between
S4 and S5 transports two channels simultaneously.

In summary, we make the key contributions as follows:

(i) Aiming at live streaming service, we formulate the
optimization problem and construct a multisource
multichannel overlay model in which the MEC
servers collaborate with each other. In addition,
the scheduling delay is also taken into consideration
to construct an optimized topology graph among
MEC servers, achieving lower link capacity with
delay constraints

(ii) Instead of using fixed live channel popularity for the
optimization, we utilize state-of-the-art LSTM
model to learn the features of historical streaming
data for adaptive and accurate popularity predic-
tion. Furthermore, we also takes the information
of time and weekdays into consideration, employing
multiscale input data to make a more accurate and
robust prediction

(iii) Cost optimization for live streaming (COLS) is pro-
posed as a complete and efficient cost optimizer
framework, which considers the whole systematic
flow of the optimization in a logical order, including
accurate key parameters prediction, comprehensive
overlay model formulation, optimal topology gener-
ation, and efficient capacity allocation. Finally,
COLS is able to achieve a lower cost in polynomial
time while meeting the delay constraint

The remainder of this paper is organized as follows.
After reviewing related works in Section 2, we elaborate the
popularity prediction of live channel in Section 3. Following
the mathematical formulation in Section 4, we compute the
topology in Section 5. Illustrative experiment results are
presented in Section 6. Finally, we conclude in Section 7.

2. Relate Work

In this section, we review related works in the areas of
MEC collaboration, popularity prediction, and scheduling
delay model.

MEC collaboration. In MEC environment, many works
[6, 7] realize collaboration mechanism among the servers
to achieve higher efficiency. For example, the approach
proposed in [6] utilizes the collaboration between the MEC
servers to cache the static content in spare time, e.g.,
midnight, which is impractical for live streaming service.
Since these proposed optimization methods aim to allocate
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the resource efficiently, they usually have different optimiza-
tion objective in resource utilization and fail to be applied in
live streaming services with real-time requirement.

Recently, some specially designed resource optimization
methods [15–18] are proposed for live streaming services.
For instance, CCAS [15] proposes an auction-based algo-
rithm to optimize the backhaul capacity and the caching
space so as to improve the live video quality. Zhang et al.
[16] model the computational and wireless spectrum
resource in edge-clouds networks. They propose a Markov
decision process to decrease the latency of live streaming
services. Nevertheless, these approaches usually focus on
resource optimization for a single MEC server and rarely
consider the collaboration among multiple servers. It poten-

tially results in a low performance such as the network
congestion while the user request is higher.

Popularity of video stream. As a key parameter, some
works predict the popularity of videos by analyzing the
image frame. For example, TLRMVR [8] proposes a novel
low-rank multiview embedding learning method to predict
the popularity of microvideo. MMVED [9] combines multi-
ple features (image frame, acoustic, and textual info) and
considers the randomness for the mapping from data to
popularity. Although these approaches are able to achieve
efficient prediction, they usually aim at the static complete
file and need to parse entire image frame, which is impracti-
cal for live streaming. Inspired by success of deep learning
techniques, Deepcache [19] predicts the popularity with
LSTM Encoder-Decoder to cache contents smartly. And
BSPP [10] presents a model for predicting the number of
user requests based on Malcov model in MEC and further
designs an offloading scheme based on this model. Although
effective, these approaches utilize the data in single dimen-
sion to predict the popularity, which lack sufficient robust-
ness while facing the random noise and outliers.

On the other hand, some approaches [20, 21] use both
the popularity and retention rate of video streams to
maximize video bitrate for efficient utilization of bandwidth.
Distinguished from these approaches which emphasize
bitrate adaptation, this paper focuses on the topology
optimization for the cooperation of MEC servers while addi-
tionally considering the scheduling delay to achieve lower
link capacity with delay constraints. Since our proposed
approach and these methods have different focus, respec-
tively, they can be combined to achieve better performances
of live streaming services.

Scheduling delay model. For the mathematical model
about overlay, most existing works [12–14] rarely formulate
the relationship between the link capacity and the server
scheduling delay. BSUM [12] considers the scheduling delay
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Figure 1: A multisource multichannel overlay model in MEC.

Popularity predicition
(COLS-P)

Problem formulation
(COLS-F)

Topology generation
(COLS-T)

Capacity reallocation
(COLS-C)

Optimizer

Figure 2: Workflow of optimizer.

3Wireless Communications and Mobile Computing



and constructs the topology graph among MEC servers to
optimize the resource. But it studies the scheduling delay
insufficiently without considering the impact of different
link capacities on the scheduling delay, which limits the
effect of optimization consequently.

3. Popularity Prediction

In this section, we take advantage of state-of-the-art LSTM
model to predict the popularity of live channels, which is the
first step called COLS-P of the optimizer as shown in Figure 2.

For time series data, recurrent neural network (RNN)
has been widely used to capture the temporal correlations
and continuity constraints. As a variant of RNN, long
short-term memory (LSTM) model solves the long-term
dependence problem of general RNN and enables the
network to learn the long-term dependence of time series
by selectively memorizing the characteristic information of
time series. At each timestep of input time series, LSTM
applies the following operations:

f t = σg Wf xt +Uf ht−1 + bf
� �

,

it = σg Wixt +Uiht−1 + bið Þ,
ot = σg Woxt +Uoht−1 + boð Þ,
~ct = σc Wcxt +Ucht−1 + bcð Þ,
ct = f t ∘ ct−1 + it ∘~ct ,

ht = ot ∘ σh ctð Þ,
yt = σo Wyht + by

� �
,

ð1Þ

where the operator ∘ denotes the Hadamard product (ele-
ment-wise product). The subscript t denotes the time step.
xt represents the input at time t and ht represents hidden
state. f , i, o represent forget gate, input and output reset
gates, respectively, and c denotes memory cell state. W, U ,
and b are weight matrices and bias which need to be learned
during training. And σ indicates the activation function.

The consecutive historical popularity data can be
regarded as time series data. Intuitively, we employ state-
of-the-art LSTM model to predict the live channel popular-
ity based on historical data. Specifically, Figure 3 shows the
popularity of one live channel on one MEC server in 300
consecutive hours and the second red box records (in 100-
150 hours period) is further detailed in Figure 4, which
presents the popularity changes in single day. We observe
from these figures that the time data have an impact on
the channel popularity:

(i) Weekday impact. The data in two red boxes of
Figure 3 correspond to the channel popularity in
Sunday and Wednesday, respectively. As presented
in Figure 3, it is obvious that the popularity of
Sunday is higher than that of Wednesday, so the
message of weekday can be a valid supplementary
information for accurate prediction

(ii) Hour impact. As shown in Figure 4, we can easily
distinguish the popularity changes in the third black
box from the first two via the trends. However, the
first two is hard to be distinguished from each other
just with the trends. Fortunately, as we can observed
in Figure 4, the different period of time in the day
(different hours) can be an efficient indicator to
resolve this confusion

Therefore, different from previous works which only
take the historical popularity data for training, we also con-
sider the influence of time data (weekday and hour info
impacts) and utilize multiscale time data for training to
achieve more accurate prediction.

We train the LSTM network for each channel individu-
ally. The raw data consists of consecutive tuples, which
contain hourly, weekday, and popularity records (i.e., user
requests) per hours. The original data is processed in the
form of sliding window, in which these tuples are treated
as the input sequence. Then, the popularity in next hour is
set as a label. As the popularity prediction in this paper is
a regression task, the loss function of the network is set to
mean square error (MSE) which is the most common and
widely used loss function for regression task.

When the training is completed, for a channel n, we use
the historical popularity records of one MEC server to pre-
dict its popularity pðnÞ in the next time period. Define qðnÞ

= pðnÞ/τðnÞ, where τðnÞ is the streaming rate of channel n.
Then, we sort the live channel by qðnÞ and select the first k
live channels as the subscribed list N i of the MEC server i.

4. Overlay Formulation

After we learned from LSTM network which channels each
MEC server should subscribe to (i.e., N i), we formulate the
overlay model including topology model, cost model, delay
model, and joint optimization for live streaming.

The major symbols used in this paper are presented in
Table 1. We regard the overlay as a directed complete graph
G = ðV ,EÞ, where V is the set of all servers (cloud servers
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Figure 3: Live channel popularity records.
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and MEC servers). Let S be the set of sources (cloud servers)
and M be the set of subscribers (MEC servers). So, E =V

×V is the set of possible overlay connections and V = S

∪M. N is the set of channels. Denote the rate of channel
n as τðnÞ. The streaming is delivered to subscribers in MðnÞ

via a tree. A subscriber receives a stream either from a cloud
server, a MEC server which subscribes to the same channel
or a helper. There are totally jN j trees, and we denote the
tree of channel n as TðnÞ.

4.1. Topology Model. Equation (2) shows a variable xðnÞij

which indicates whether link hi, ji is used in tree TðnÞ. All
xðnÞij are combined into a vector solution x!.

x nð Þ
ij =

1, if i, jh i ∈ T nð Þ,

0, otherwise,

(
ð2Þ

x! = xij xij
�� =max

n
x nð Þ
ij , n ∈N

n o
: ð3Þ

Equations (4) and (5) guarantee each channel tree is
connected, and there is no isolated server. Also, there is no
loop in each tree as shown in Equation (6). jMðnÞj is the
number of MEC servers which subscribe to channel n. sðnÞ
is the source server of channel n. Y is a subset of servers
and EðYÞ denotes the set of links connecting servers in Y .

M nð Þ
��� ��� ≤ 〠

i,jh i∈E
x nð Þ
ij ≤ Mj j, ∀n ∈N , ð4Þ

〠
i,jh i∈E

x nð Þ
ij ≥ 1, ∀i ∈M ∪ s nð Þ

n o
,∀j ∈M nð Þ,∀n ∈N , ð5Þ

〠
i,jh i∈E Yð Þ

x nð Þ
ij ≤ Yj j − 1, ∀Y ⊆M ∪ s nð Þ

n o
,∀n ∈N :

ð6Þ
4.2. Cost Model. Denote the capacity of link hi, ji as bij. Like
xij, all bij are combined into a vector ~ b = fb12, b13,⋯, bijg.
The link cost is cij, which is a linear function of bij. Total cost
C is the sum of all link capacity costs, i.e.,

C = 〠
i∈V ,j∈M

xij ∗ cij bij
� �

,

cij bij
� �

= kij ∗ bij,
ð7Þ

where kij is a constant coefficient.

4.3. Delay Model. We employ a sequential scheduling model
in which a parent node transmits packets into one link after
another sequentially [22]. Denote the worst-case scheduling
delay of server i as dsi, which is the maximum amount of
time that a packet has to wait until it is transmitted out
completely (according to a packet, its queuing delay is the
sum of other packets’ transmission delay.). To avoid the
congestion, dsi should be smaller than the time interval L/τ
between two sequential packets, where L is the packet size
[22]. Therefore, we set following congestion constraints:

dsi =〠
n

〠
k∈Γi

L · x nð Þ
ik

bik
, ð8Þ

dsi ≤
L

τmax , τ
max = maxnτ nð Þ,  n ∈N Out

i , ð9Þ

where Γi is the set of children (with repetition) of server i in
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Figure 4: Popularity records in specific time period.

Table 1: Major notations.

Notation Definition

S Set of sources (cloud servers)

M Set of subscribers (MEC servers)

V Set of servers where V = S ∪M

E Set of links

N Set of channels

N i Set of subscribing channels of server i

τ nð Þ Streaming rate of channel n

s nð Þ Source server of channel n

p nð Þ Predicted popularity of channel n

M nð Þ Set of subscribers of channel n

T nð Þ Deliver tree of channel n

i, jh i Link from server i to server j

bij Link capacity of i, jh i
cij Capacity cost of i, jh i
xij Indicator indicating whether i, jh i is used
dpij Propagation delay of i, jh i, dpij = dpji

dsi Worst-case scheduling delay of server i

D nð Þ
i Source-to-end delay of server i in tree T nð Þ

D Total delay constraint

C Total capacity cost
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all channel trees, Ni
Out is the set of channels that server i is

streaming out. τmax is the maximum streaming rate of these
channels (Ni

Out may be different from Ni since server i can
be the leaf of a tree (it will not stream out such channel) or
it acts as a helper to relay an unsubscribed stream.).

We illustrate an example of the scheduling delay in
Figure 5. Server i is the parent node while others are son
node. b1 and b2 are capacities of link hi, j1i and hi, j2i,
respectively. Channel streams A and B are pushed from
server i. Servers j1 and j2 subscribe to channel fAg and
fA, Bg. Hence, child set Γi of server i is fj1, j2, j2g (j2 is
calculated repeatedly). In a scheduling period, server i
transmits one packet into each edge hi, j1i, hi, j2i, and hi,
j2i. Therefore, it transmits three packets totally. The worst-
case scheduling delay is the maximum amount of time that
the third packet has to wait until it is transmitted out
completely, i.e., dsi = L/b1 + L/b2 + L/b2. Denote the rate of
channel A and B as τðAÞ and τðBÞ, respectively, then we have
dsi ≤ L/max ðτðAÞ, τðBÞÞ.

D nð Þ
j =D nð Þ

i + dsi + dpij ≤D, ∀j ∈M,∀n ∈N : ð10Þ

Equation (10) shows the source-to-end delay constraint.
Denote the propagation delay of link hi, ji as dpij and the

source-to-end delay of server j in tree TðnÞ as DðnÞ
j . DðnÞ

j is
the sum of the source-to-end delay of its parent i in tree
TðnÞ, the scheduling delay of i and the propagation delay of
link hi, ji. To ensure quality of service, the source-to-end
delay of each node is bounded by a constant value.

4.4. Joint Optimization Model. Combining the above model,
we formulate our cost optimization problem as follows:

Objective : min
x!,b

!
13ð Þ,

subject to : 9ð Þ, 10ð Þ, 11ð Þ, 12ð Þ, 15ð Þand 16ð Þ:
ð11Þ

Our goal is to find overlay trees among MEC servers for
each live channel (optimize x!) and allocate the capacity

(optimize b
!
) to minimize the cost while the delay is still

under a boundary. However, it is a mixed integer nonlinear
programming which is NP-hard [23]. Besides, from Equa-
tions (8) and (10) and Figure 5, we find that the source-to-
end delay of server j1 can be affected by link capacity b2,
even though link hi, j2i does not connect j1. It means there
are correlations among different link capacities. When a tree
is constructed completely, the scheduling delay is not deter-
mined and is affected by other trees which are constructed
later. These factors bring difficulties in solving problems.
So, we divide the original problem into two subproblems
and solve them sequentially in Section 5.

5. Algorithm Design

To simplify the problem, we divide the original problem into
two subproblems: topology generation (COLS-T) and capac-

ity allocation (COLS-C). In COLS-T, we ignore the schedul-
ing delay and congestion constraints to construct an overlay
that meets the delay bound. In COLS-C, we reassign the
capacity to each link so as to reach a lower cost based on
the aforementioned topology.

5.1. Topology Generation (COLS-T). In this section, we
ignore the scheduling delay and constraint as present in
Equation (9), focusing on the propagation delay to con-
struct the tree. Hence, the problem is transformed into
how to find a series of Steiner minimum trees [24] under
the hop-constraint. We use a greedy scheme to solve it in
polynomial time.

There are totally jN j channel trees. Each tree is initial-
ized and has only a source cloud server. The initial capacity
of a tree is its channel rate (In COLS-C, we will reallocate the
capacity). We expand the tree from the source server to
subscribing servers by adding a server into a partially

constructed tree in each iteration. We define a metric ðΔ
CðnÞ
ij orΔCðnÞ

ihj Þ called the Marginal Unit Cost (MUC) to
determine which server is added. A server has two ways to
join in the tree, and their MUC is given by:

(i) Server j is directly connected via server i andMUC is:

ΔC nð Þ
ij =

cij tij + τ nð Þ� �
− cij tij

� �
τ nð Þ ,D nð Þ

i + dpij≤D

+∞,D nð Þ
i + dpij >D

8><
>: : ð12Þ

(ii) Server j is connected through a potential helper h via
server i. MUC is given by:

ΔC nð Þ
ihj =

ΔC nð Þ
ih + ΔC nð Þ

hj ,D
nð Þ
i + dpih + dphj≤D

+∞,D nð Þ
i + dpih + dphj >D,

8<
: ð13Þ

where tij is the concurrent throughput of link hi, ji.
COLS-T is outlined in Algorithm 1. In each iteration, we

select link hi, ji which incurs the smallest MUC and connect
the corresponding server j into tree TðnÞ. Then, we update
overlay parameters and continue a new iteration until all
servers are connected. Finally, we combine all Steiner trees
fTðnÞg into a mesh.

Parent node
Son node
Channel A stream
Channel B stream
Edge

i

b
2b

1

j1 j2

Figure 5: Scheduling delay example.
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5.2. Capacity Allocation (COLS-C). To achieve efficient
capacity allocation, we take the scheduling delay into consid-
eration based on the aforementioned overlay fTðnÞg given by
COLS-T. So we reallocate the capacity of each link to make
most of the limited capacity and achieve lower cost.

In order to achieve optimal allocation, we first prove the
capacity allocation is a convex problem. Then, we take
advantage of classical optimization algorithm, sequential
least squares quadratic programming (SLSQP) which is
widely used to solve the convex optimization problem.

Considering that the overlay topology has been con-
structed, x! is constant, i.e., Equations (3), (4), (5), and (6)
are always satisfied so we can omit them. In this way, our

objective is to find a vector b
!

so that (7) get a minimum
value subject to constraints (9) and (10).

We prove COLS-C is a convex problem as follows:

(i) Object function (7) is the sum of convex functions.
Obviously, (7) is a convex function

(ii) Scheduling delay constraint (9) can be rewritten as:

f b
!� �

=〠
n

〠
k∈Γi

L · x nð Þ
ik

bik
−

L
τmax ≤ 0, ð14Þ

where Γi is the children set of server i. L/τmax is a constant.

The second-order derivative of f ðb!Þ fulfills the condition
of being convex:

∇2 f b
!� �

≽ 0: ð15Þ

Hence, f ðb!Þ is a convex function.

(iii) Total delay constraint (10) is similar as (9). It can be
rewritten as:

g b
!� �

=D nð Þ
j −D = dps nð Þ j + 〠

i∈A nð Þ
j

〠
k∈Γi

L
bik

−D ≤ 0, ð16Þ

where sðnÞ is the source of channel n; dp
sðnÞ j is a constant means

the aggregated source-to-end propagation delay of server j;

AðnÞ
j is the ancestor set of server j; D means the delay upper

bound. gðb!Þ is also a convex function since ∇2gðb!Þ ≽ 0.
As demonstrated above, object function (7) and con-

straints (9) and (10) are all convex, so we have proved that
the capacity allocation is a convex problem. Then, we utilize
SLSQP algorithm (SLSQP can be called directly from the
library SciPy) to seek the minimum solution by iterating
over the objective function (7) which denotes the sum of
all link capacity costs, while satisfying the delay constraints
(9) and (10).

5.3. Computational Complexity Analysis. The complexity of
COLS is OðjN j2jP j3jV j + jEj3Þ. In COLS-T step, one server
is included into one tree at each round, and there are totally
OðjN jjP jÞ rounds. In each round, there are OðjN jjP jjV jÞ
links to be calculated. Each link costs OðjP jÞ time to select
the helper, hence, adding a node in each round costs OðjN
jjP j2jV jÞ and all rounds cost OðjN j2jP j3jV jÞ.

In COLS-C step, we use SLSQP to solve the convex prob-
lem. It uses the Han-Powell quasi-Newton method with a
BFGS update of the B-matrix and L1-test function in the
step-length algorithm. It has OðQ3Þ overall time complexity
where Q is the number of variable [25–27]. There are jEj var-
iables, so the time complexity is jEj3. In summary, the overall
complexity of COLS-fT + Cg is OðjN j2jP j3jV j + jEj3Þ.

6. Illustrative Experiment Results

To evaluate the performance of COLS, we have conducted
extensive experiments in two aspects: popularity prediction
and mathematical optimization. We present detailed experi-
ment settings and comparison schemes in Section 4.1. Then,
we illustrate results in Section 6.2.

6.1. Simulation Setup. We compare COLS with following
state-of-the-art schemes:

(i) DEEPCACHE [19] builds a LSTM Encoder-
Decoder model to predict the popularity of content.

1 TðnÞ ⟵ sðnÞ, JðnÞ ⟵P ðnÞ,H ðnÞ ⟵P −P ðnÞ;
2 while ∃n ∈N , JðnÞ ∉ ∅ do
3 foreachn ∈N , i ∈ TðnÞ, j ∈ JðnÞ do
4 if ΔCðnÞ

ij < ΔCðnÞ
ihj , h ∈H

ðnÞ then

5 TCðnÞ
ij ⟵ ΔCðnÞ

ij

6 hðnÞij ⟵∅;
7 else

8 TCðnÞ
ij ⟵ ΔCðnÞ

ihj ;

9 hðnÞij ⟵ h
10 end
11 end

12 i, j, n⟵ arg min
i,j,n

TCðnÞ
ij ;

13 if hðnÞij ∉∅ then

14 Add helper h, node j into TðnÞ via node i;
15 H ðnÞ ⟵H ðnÞ − h;
16 tih + = τðnÞ;
17 thj + = τðnÞ;
18 else
19 Add node j into TðnÞ via node i;
20 tij + = τðnÞ;
21 end
22 JðnÞ ⟵ JðnÞ − j;
23 end

Algorithm 1: COLS-T
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In this network, the dimension of training data is
single, and it only has historical playback records

(ii) CCAS [15]. Each MEC server connects the cloud
server directly, and there is no collaboration. The
MEC server gives up delivering some channels to
save the link capacity. The link capacity is a
constant in CCAS, and the scheduling delay is not
considered. To meet the delay constraint, we adapt
CCAS by adding a capacity allocation step. We
increase the capacity iteratively with a certain pro-
portion until it meets the constraint

(iii) BSUM [12] constructs an overlay with MEC collab-
oration. It considers the scheduling delay insuffi-
ciently, which ignores the correlation between
different link capacities, and hence, the real schedul-
ing delay is higher. Besides, just like CCAS, the link
capacity is constant. BSUM only optimizes the
topology and does not optimize the capacity. We
also add a capacity allocation step which is the same
as the step in CCAS

The dataset used for experimental evaluation comes
from real scenes, which is provided by the telecom operator.
Considering that the size of the source raw data is more than
2TB including 931964 files (live streaming playback records)
[28], we randomly choose a certain number of the records in
several consecutive periods of time to construct the dataset
used for evaluation. And the detailed baseline parameters
are shown in Table 2.

Specifically, experiments are carried out in two parts:

(i) Popularity prediction. We compare COLS with
DEEPCACHE. We randomly selected 10 sequences
as input of designed model and output the corre-
sponding predicted popularity. Mean square error
is used to evaluate the prediction performance

(ii) Cost optimization. To compare COLS with CCAS
and BSUM, we randomly select some MEC servers
from the raw data and generate round trip time
(RTT, which denotes the propagation delay) matrix
among servers. For the selected servers, we use the
aforementioned LSTM network to predict the popu-
larity and get the subscribed list of each MEC
servers. In order to ensure the accuracy of results,
the channel that the MEC server subscribed to in
CCAS and BSUM remains the same as COLS. Each
scheme is evaluated 20 times and gets an average
result. To evaluate the performance of each scheme,
we focus on the cost metric, which is the sum of all
link capacity costs

6.2. Simulation Results. To evaluate the performance of
proposed approach, we have conducted extensive experi-
ments. Figures 6 and 7 demonstrate COLS’s advantages
(MEC collaboration, scheduling delay consideration and
capacity convex programming), which make it outperforms
other schemes. Figure 6 illustrates the component propor-

tion of maximum server delay before capacity allocation.
CCAS does not consider the scheduling delay and BSUM
considers insufficiently. Both of them have some missing
scheduling delays which are not calculated. All their theoret-
ical delays are lower than the bound but real delays are
opposite. To meet the delay constraint (500ms in this
paper), they need to allocate more capacities to reduce
the scheduling delay, which bring the cost increases. Just
as mentioned above, CCAS makes MEC servers connect
the cloud server directly, leading to a higher scheduling
delay and a lower propagation delay. On the contrary,
COLS and BSUM have collaborations, and thus, their
scheduling delays are lower.

Figure 7 depicts maximum server delays after capacity
allocation. It is obvious that CCAS reduces most scheduling
delay and causes a highest capacity cost. BSUM uses a simple
allocation algorithm, and the link capacity is redundant after

Table 2: Baseline parameters.

Parameters Value

Number of servers Vj j = 50

Number of all channels Nj j = 10

Length of sliding window in COLS-P W = 6

Selected parameter in COLS-P k = 3

Segment size L = 100kb

Dalay constraint D = 500ms

CCAS
0

BSUM COLS

D
el

ay
 (m

s)

Propagation delay
Calculated scheduling delay
Missed scheduling delay

50
0

Figure 6: Max delay before reallocation.

CCAS BSUM COLS

Propagation delay
Calculated scheduling delay

0

D
el

ay
 (m

s)
50

0

Figure 7: Max delay after reallocation.
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the allocation. Hence, the scheduling delay is lower than that
of COLS as shown in Figure 7. Compared with other
schemes, COLS uses convex programming to allocate capac-
ities, which is more efficiently. It makes capacities less
redundant and minimizes the cost while the delay is still
under the bound (500ms).

Figure 8 shows the cost versus the channel number. The
results demonstrate that COLS outperforms the other two
competing schemes, and the cost of COLS is only around
half of BSUM/one-third of CCAS when the channel number
reaches 6. CCAS gives up delivering some live channels, i.e.,
users receive the live stream from the cloud server directly,
which increases the cloud server scheduling delay and saves
the link capacity. When the channel number is low, the over-
lay topology is simple, and fewer links connect the cloud
server, which provides more growth space for the scheduling
delay. However, as the channel number increases, the
topology becomes complicated, and more links connect
the cloud server. CCAS needs more capacities to reduce
the scheduling delay. These capacity costs are higher than
costs saved by giving up live channels. Inversely, in this
case, COLS has the lowest cost because of MEC collabora-
tion, scheduling delay consideration, and convex program-
ming. It is more suitable for multichannel overlay, which
is more common in the reality, i.e., COLS is more practi-
cable than other schemes.

Figure 9 presents the difference results between COLS
and DEEPCACHE. The mean prediction error of our
method is lower than that of DEEPCACHE. This is because
COLS adds more information (hours and weekday) to pre-
dict the popularity, making it a more accurate.

Figure 10 illustrates the cost versus the server number. It
shows that COLS cost is lowest (outperforms others at least
40%) and increases more slowly than that of competing
schemes. The reason is that COLS considers both MEC
collaboration, scheduling delay, and efficient capacity alloca-
tion. In CCAS, all MEC servers connect the cloud server
directly. Section 5 infers that the cloud server connects too
much links, leading to a high scheduling delay. To reduce
the scheduling delay, CCAS has to increase the link capac-
ity and gets a highest cost. BSUM considers the scheduling
delay insufficiently, and the real delay is beyond the
bound. It has to allocate more capacity to meet the con-

straint. The allocate algorithm causes redundant capacities
and a higher cost.

We plot in Figure 11 the cost versus the delay constraint
D with 50 servers. When D decreases, topology graphs con-
structed by COLS and BSUM gradually become similar as
the graph constructed by CCAS, i.e., MEC servers connect
the cloud server directly, and there is no MEC collaboration.
The reason is that the propagation delay will accumulate and
beyond small constraint if there are collaborations. There-
fore, CCAS could give up some live channels to get a lower
cost. When D increases, all costs of three schemes decrease.
COLS has collaborations and convex programming to
reduce the cost more quickly than others. In other words,
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Figure 8: Cost vs. channel number.
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high-cost reductions are achieved by sacrificing a small
amount of delay in COLS.

7. Conclusion

In this paper, we study the cost optimization of an overlay
MEC network for live streaming. Proposed network has a
more realistic delaying and topological model, where MEC
servers collaborate with each other to delivery streaming.
We formulate the problem and propose a framework called
COLS, which predicts the popularity by LSTM model and
solves optimization problem by greedy scheme and convex
programming. Simulation results show that COLS has
higher prediction accuracy, reduces the capacity cost by at
least 40% compared with state-of-the-art schemes.
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