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Abstract—Indoor location-based services (LBS) have exhibited
large commercial and social values in smart cities, and urgent
demands of which have spurred many localization techniques.
Existing indoor localization approaches mostly rely on fingerprint
techniques, leveraging either spatially discrete fingerprints or
temporally consecutive ones for localization. However, these
approaches often suffer from large errors or high time overhead
in practice due to signal ambiguities or long input sequences. To
overcome these drawbacks, this paper proposes a framework
utilizing multiple adaptive representations of signal sequences
for localization, where each representation indicates a corre-
sponding signal structure with underlying location clues. As
an example, the proposed approach takes geomagnetic signal
sequences as input and infers location features from two intuitive
representations, e.g., spatial and temporal ones. With adaptive
signal representations, the proposed approach takes specifically
optimized neural networks to extract corresponding location
clues respectively and fuses them to generate more distinguish-
ing features for more accurate localization. Furthermore, the
ensemble learning mechanism is adopted in the approach and a
weighted k-NN based location estimation algorithm is devised to
enhance the robustness. Extensive experiments in three different
trial sites demonstrate that the proposed approach outperforms
state-of-the-art competing schemes by a wide margin, reducing
mean localization error by more than 46%.

Index Terms—indoor localization, geomagnetism, signal repre-
sentations, neural networks, ensemble learning

I. INTRODUCTION

The growing demands for indoor location-based services
(LBS) and the popularization of smart mobile devices have
spurred rapid development of indoor localization techniques.
Indoor localization plays a more and more critical role in
empowering Internet of Things for a wide range of appli-
cations, e.g., pedestrian or robot localization [1], [2], crowd
monitoring [3] and targeted advertising [4], to name a few.
Traditional satellite-based positioning and navigation systems
(such as GPS) cannot meet the requirements of accurate
indoor positioning due to signal attenuation caused by poor
connectivity between end devices and satellites in indoor
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environment, which triggers researchers to bend their energies
to further explorations on indoor localization.

With rapid popularization and ubiquitous nature of vari-
ous sensors in mobile devices, e.g., radio-frequency sensor,
imaging sensor and magnetometer, various signals captured
by these sensors are employed for indoor localization, such as
Wi-Fi [5], [6], Bluetooth Low Energy (BLE) [7], vision [8],
and geomagnetism [9], [10]. Among all those signals explored,
geomagnetic signal shows great application prospect due to
its omnipresence, which means there is no need for any
extra infrastructure deployment for localization. Moreover, ge-
omagnetic signal which mainly generates from natural earth’s
magnetic field exhibits high global stability over time and it
also has strong local variations due to metamorphic nature
of indoor environment caused by nearby ferromagnetic ob-
jects, e.g., electrical appliances, steel-based building materials,
which provide much promise for accurate localization [11].
And the impact of pedestrians on geomagnetic field is also
marginal compared with that on other signals (vision, Wi-Fi,
BLE). In that respect, geomagnetic signal is more adaptable
especially in the scenes with large human traffic.

On the other hand, the underlying positioning algorithms
are the key to indoor localization. Reviewing the existing
positioning algorithms, fingerprint-based ones have drawn
much attention [12], [13]. Most fingerprint-based positioning
techniques can be broadly divided into two categories: spatial
based and temporal based approaches. In the first category, the
spatial location clues refer to discrete measurements of input
signals at different indoor locations (e.g., a Wi-Fi/Bluetooth
fingerprint, a geomagnetic measurement or an image at a fixed
location). Ferromagnetic objects, such as doors, iron cabinets,
escalators or lifts usually fluctuate nearby geomagnetic fields,
posing distinguishing spatial patterns for localization [14].
Based on these discrete signal measurements with spatial
location clues, existing approaches infer current position with
the most similar geo-tagged signal fingerprint by comparing
it with a pre-established database. However, suffering from
poor distinctiveness of discrete signal measurements (loca-
tions far away may have very similar signal fingerprint),
these approaches are usually incapable of achieving sufficient
accuracy and robustness, especially in large spacious sites.
The approaches that utilize discrete signal measurements are
prone to location feature ambiguity and be easily impacted
by random noise, which may cause large localization errors
consequently.

To revamp the localization performance, some researches
switch from discrete signal observations to explore context
temporal correlations [15], in which temporal successive mea-

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2021.3113333

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2020 2

Loc 1 Loc 2 Loc 3

Loc 1 Loc 2 Loc 3

Location 1

Location 2

Location 3

Convert the 

sequence into 

heatmap based

on row-major order

Geomagnetic data collection

while user walking

Collected geomagnetic sequence 

in three axes (X, Y and Z)

Fig. 1: For a geomagnetic signal sequence collected while
user walking, we convert it into a geomagnetic heatmap.
(Red/blue/green lines denote the components of geomagnetic
sequence in three axes of X,Y and Z respectively.)

surements of signal are employed to indicate location clues,
e.g., a signal RSSI (Received Signal Strength Indicator) vector,
a video clip or a geomagnetic measurement sequence. These
approaches evaluate the specific fluctuations of successive
signal sequence in indoor environment and take advantage of
this pattern which implies temporal clues to pinpoint current
position. Taking temporal correlations between consecutive
signal measurements into consideration, these temporal based
approaches transcend previous spatial based ones which use
discrete inputs. And the impact of signal random noise can
be effectively reduced by means of employing such continuity
constraints and temporal correlations, thus eliminating erro-
neous position estimations. However, employing long input
signal sequences usually causes the increasing of computa-
tional complexity [16], which leads to large time consuming.
To achieve lower time overhead, some approaches utilize short
signal sequences as input (e.g., a short RSSI vector or a few
frames of videos). Suffering from a limited spatial coverage
of short sequences, it leads to degenerate distinctiveness of
location clues and large localization errors consequently.

In this paper, we propose to utilize multiple adaptive rep-
resentations of a signal sequence for accurate localization.
More specifically, we devise a location estimation framework
that considers both Spatial and Temporal location features of
signal for Localization, termed ST-Loc. And the crux of ST-
Loc is how to effectively extract distinctive location features
under different dimensions. Firstly, instead of using raw data
directly, we convert the input sequence into multiple adaptive
representations, e.g., spatial and temporal ones in this paper,
where each representation indicates a corresponding signal
structure with underlying specific location correlations. Then,
we extract corresponding location features on the basis of these
signal representations respectively and fuse them together
to generate more comprehensive and distinguishing fusion
features for localization. To reduce the impact of random
noise, we further improve its performance by employing
ensemble learning mechanism in final location estimation,
using selective ensemble method among multiple independent
trained localization models to achieve higher robustness.

In summary, we make the following contributions:

• Utilizing multiple adaptive representations of signal for
more distinctive location features: As discussed above,
the distinctiveness of location features is critical for
revamping localization accuracy. To facilitate distinctive
feature extraction from signal, we propose to convert
the original signal sequence into multiple adaptive repre-
sentations with underlying correlations, e.g., spatial and
temporal ones in this paper. Then, we adopt specifically
optimized networks to extract features respectively and
fuse them together for accurate localization.

• Inferring spatial features through image processing meth-
ods: A collected signal sequence is firstly converted into
a heatmap, a spatial representation where each pixel cor-
responds to a spatial location and the pixel value denotes
signal reading. Then, employing specifically optimized
ResNet [17], we apply convolution to different patches
of this heatmap, which correspond to spatially distributed
signal observations at regular intervals in the local region,
as shown in Fig. 1. In this way, we are able to infer spatial
location features from these signal readings that span a
long range, which reflect the regional correlation.

• Extracting temporal features with hierarchical recurrent
network: For an ordered signal sequence, LSTM model is
employed as basic unit in ST-Loc to extract underlying
temporal features of signal sequence. Since it’s usually
time-consuming to extract temporal features with conven-
tional LSTM from a long sequence directly, we devise a
hierarchical structure to reduce the overall time overhead
of feature extraction by means of sequence segmentation
and parallel processing mechanism. Furthermore, we en-
hance the extracted features by employing a bidirectional
scheme, considering both past and future contextual cor-
relations in the sequence.

• Employing ensemble learning for robust location estima-
tion: To reduce the impact of random noise and outliers,
we apply ensemble learning mechanism in ST-Loc to
improve robustness. We first construct multiple location
estimation models with different initial training settings.
Then by integrating these models to make a vote on
localization results, ST-Loc overcomes the problem that
the individual model is prone to random errors. On this
basis, we further design a weighted k-NN based joint
location estimation strategy for better adaptability facing
complex indoor scenes. Through the mechanism above,
we further improve localization accuracy and robustness
of ST-Loc.

As mentioned earlier, geomagnetic signal benefits from its
omnipresence, high global stability over time and strong local
variations in indoor environment. In this paper, as an example,
we take geomagnetic sequences as input to evaluate the local-
ization performance of ST-Loc. We have conducted extensive
experiments in three different trial sites and experimental
results demonstrate that ST-Loc reduces mean localization
error by more than 46% and achieves lower time overhead
during localization compared with state-of-the-art competing
approaches. Besides, ST-Loc can be also theoretically adapted
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Fig. 2: The workflow of the proposed localization system.

to other signal sequences for indoor localization, such as Wi-
Fi [5], Bluetooth [7] and vision [8] sequences.

The remainder of this paper is organized as following. We
review related works in Section II. The workflow of ST-
Loc is presented in Section III and the design of ST-Loc
is elaborated in Section IV. Then we illustrate experimental
results in Section V and finally conclude in Section VI.

II. RELATED WORK

In this section, we review the related works. To achieve
higher accuracy and efficiency, researchers have explored
various ambient signals for localization. e.g., Wi-Fi, Bluetooth
Low Energy (BLE), visible light and so on. While Wi-Fi [18],
BLE [19] and visible light-based [20] approaches are able
to achieve sufficient accuracy in some specific scenes, they
usually need to deploy extra infrastructures, which increases
deployment and maintenance cost significantly. Even though
pure vision-based approach [21] does not need external in-
frastructures, it is limited to specific scenes with rich textures.
Moreover, the work in [22] proposes to utilize a short video
clip to recognize and calibrate landmarks, then calculate the
user’s position based on triangulation technology. Although
efficient, this approach need user’s extra operations (record
video in a specified manner), which is not user-friendly.

Compared with signals mentioned above, geomagnetism has
attracted much attention lately. Considering spatial features of
geomagnetic signals, some researchers evaluate the measure-
ment of geomagnetic signal at different indoor locations and
use this pattern to pinpoint users, which is inspired by that
ferromagnetic objects, such as doors, iron cabinets, escalators
or lift usually fluctuate nearby geomagnetic field, posing dis-
tinguishing spatial patterns. For example, LMDD [23] employs
the geomagnetic pattern of door opening to discover doors.
And SemanticSLAM [24] proposes to cluster geomagnetic sig-
nal observations so as to find landmarks for calibrating current
position. However, such discrete signal observations still have
a very limited discernibility, and single observation collected
at different positions could be similar. This signal ambiguities
may result in degraded distinctiveness of location features. As
a result, discrete signal observation is not sufficient to be used
as a unique location signature especially in large-scale indoor
scene.

Noticing the temporal correlations of signal sequence, some
researchers propose to leverage sequential measurements of

TABLE I: Major symbols used in the paper.

Notation Definition

m A single geomagnetic observation

S Geomagnetic observation sequence

Smatrix Geomagnetic matrix converted from S

u Width of the matrix Smatrix

v Height of the matrix Smatrix

FS Spatial feature extracted from geomagnetic heatmap

FT Global extracted temporal feature

r Preset number of trained models in ensemble learning

L An estimation location for input sequence

signal as input. By vectorizing multiple successive signal
observations to obtain higher dimensional temporal signature,
these approaches enhance localization accuracy with such
temporal location correlations. For instance, NaviLight [25]
and Travi-Navi [26] both take signal sequence as input and em-
ploy dynamic time warping (DTW) algorithm for localization.
However, the comparison of two sequences is usually compu-
tationally expensive and may result in high computational cost
and time overhead especially when it needs to use relatively
long signal sequences as input for sufficient accuracy. In
addition, some researchers employ motion sensor assistance to
achieve higher accuracy. The works in [16], [27] adapt particle
filter mechanism to help positioning with signal fingerprints.
Furthermore, WAIPO [28] and Magicol [29] fuse other signals
(images, Wi-Fi) to enhance the localization accuracy. Although
effective, those approaches still have some drawbacks. First,
multiple signal-fusion localization means multiple signal data
collection, which incurs higher cost of site survey. Second, the
noise of inertial measurement unit (IMU) has a large impact
on particle filter mechanism, which leads to potentially large
localization error. Third, to achieve sufficient accuracy, they
have to generate a large number of particles in particle filter
mechanism, which also incurs large computational cost and
causes high time overhead.

Recently, inspired by the success of deep learning algorithm,
some approaches [30]–[33] propose to utilize neural networks
to process signal sequences for predicting position. For exam-
ple, DeepML [31] fuses magnetic field data and light intensity
data and devises a long short-term memory (LSTM) based
system for localization. The work in [33] proposes to utilize
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Fig. 3: Overall framework of ST-Loc.

the ordered geomagnetic sequence as input instead of discrete
observations and employs a basic recurrent neural network
(RNN) to extract the location features for localization. With
state-of-the-art deep learning techniques, those approaches can
achieve good performance in some typical scenes. However,
facing more complex indoor scenes, there are few specifically
optimized neural networks for indoor localization. And it’s still
hard to effectively extract valid location feature for sufficient
localization accuracy just with a simple LSTM or a basic RNN,
especially in large indoor site.

A preliminary version of ST-Loc has been reported in [34].
While it typically works well for localization with geomag-
netic signal, its performance can be further improved. In this
paper, we advance it as follows: 1) We first further analyze
the characteristics of geomagnetic signal in detail, which
provide a more comprehensive guidance for pre-processing of
geomagnetic signal; 2) Considering the impact of statistical
noises and outliers, we employ ensemble learning mechanism
to enhance the robustness and further devise a weighted k-NN
based location estimation algorithm for higher accuracy and
robustness. 3) We also conduct more complete and extensive
experiments in real trial sites to evaluate the performance of
proposed network, and experimental results show that ST-Loc
with further enhancements is able to achieve higher robustness
and further reduce mean localization error, compared with
previous version.

III. SYSTEM WORKFLOW

In this section, we present the workflow of proposed local-
ization system in Fig. 2. For demonstration, we make use of
geomagnetic sequences and consider both spatial and temporal
features of which to locate targets.

The system workflow consists of two phases, an offline
phase and an online phase. In the offline phase, we collect
geomagnetic data in the trial site and use the labeled data to
train the localization models based on the designed network.
Specifically, we first design dense survey paths in the public
area of the trial site according to its floorplan. Then surveyors

walk along these designed paths, carrying a client device
which records the sensor data including geomagnetic signal
along the paths. Combining the indoor structure information
(location coordinate) from floorplan, we label each collected
geomagnetic sequence with the location coordinate where the
last geomagnetic sample is collected. Then we store these
labeled geomagnetic sequences in a database. Based on the
constructed database, we take advantage of ensemble learning
mechanism to train multiple localization models which will be
used in online phase for location estimation.

In the online phase, each user carries a client device and
walks in the trial site. The client program records the sensor
data along the path including geomagnetic measurements
automatically. To reduce the impact of the external factors, we
first process the collected geomagnetic sequences to resolve
the random noise and heterogeneity problem (Section IV-A).
Then we convert the processed geomagnetic sequences into
spatial and temporal representations respectively and extract
corresponding features for localization (Section IV-B and
Section IV-C). With multiple localization models trained in
offline phase, we finally employ ensemble learning technique
and devise an adaptive combination strategy for multiple
trained models to enhance the accuracy and robustness of final
location estimation (Section IV-D).

IV. DETAILED DESIGN OF ST-LOC

In this section, we elaborate the design of proposed ST-Loc
which employs both the temporal and spatial clues of signal
sequences for localization. We first illustrate the overall struc-
ture of ST-Loc in Section IV-A. Then, we present the process
of spatial and temporal feature extraction in Section IV-B and
Section IV-C respectively, followed by the details of ensemble
learning based position estimation in Section IV-D. Finally, a
brief time complexity analysis is presented in Section IV-E.
And Table I lists the major symbols used in this paper.
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Fig. 4: Raw geomagnetic sequence col-
lected with different devices along a same
indoor trajectory.

0 500 1000 1500 2000

Filtered Geomagnetic Sequence Samples

20

40

60

80 Samsung S7

Huawei Mate9

Xiaomi Mi6

Samsung C5

Fig. 5: Filtered geomagnetic sequence
collected with different devices along a
same indoor trajectory.
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Fig. 6: Gradient magnitude of geomag-
netic sequence collected with different
devices along a same indoor trajectory.
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Fig. 7: Moving speed under different
walking modes along a same trajectory
(fast, slow and variable speed).
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Fig. 8: Original geomagnetic sequence
under different moving speed along a
same indoor trajectory.
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Fig. 9: Squeezed/Stretched geomagnetic
sequence under different moving speed
along a same indoor trajectory.

A. Overall structure of ST-Loc

Knowing the limited feature discernibility of single geomag-
netic measurement, ST-Loc takes the consecutive geomagnetic
sequences as input. Moreover, ST-Loc considers both temporal
and spatial location features of geomagnetic sequences for
localization. The overall framework of ST-Loc is presented
in Fig. 3. Noticing the noise of device sensor, we first filter
high frequency noise of the sequence, and employ the gradient
of sequence as input instead of raw sequence to deal with the
device heterogeneity problem. With processed sequence, we
design a hierarchical BiLSTM to capture the corresponding
temporal features. Meanwhile, we convert the geomagnetic se-
quence into a heatmap, and apply a specially optimized ResNet
to extract spatial features from resulted heatmap. Then we
fuse extracted temporal and spatial features to generate more
comprehensive and distinctive fusion features. Finally, we
employ ensemble learning mechanism on ST-Loc and devise
a weighted k-NN based multi-model joint position estimation
strategy for final position estimation. More specifically, ST-
Loc consists of four major modules: 1) Data preprocessing; 2)
Multi-scale spatial feature extraction; 3) Hierarchical temporal
feature extraction and 4) Ensemble learning based position
estimation. We overview each module as following:

1) Data pre-processing. For raw geomagnetic sequence, as
shown in Fig. 4, it is inevitably mixed with random noise
caused by user motion and other factors. Therefore, we first
apply empirical mode decomposition (EMD) [35] algorithm

to filter out high frequency noise of the raw sequence to
obtain filtered geomagnetic sequence as presented in Fig. 5.
Then for device heterogeneity (various devices or sensors may
have different calibrations for magnitude of geomagnetic field
intensity as illustrated in Fig. 4), we calculate the gradient
of filtered geomagnetic sequence as input instead of using
geomagnetic sequence directly, in view of that the distortions
of geomagnetic sequences collected by different devices at the
same position are the same. Utilizing gradient sequence, as
shown in Fig. 6, we don’t have to put extra effort to calibrate
different devices to a uniform standard.

In addition, user (speed) heterogeneity problem also needs
to be considered in practice. Even using a same device
along a same trajectory, different user moving speed usually
leads to distinct geomagnetic sequence with different scales
as shown in Fig. 8. To address this, we first estimate the
speed of users based on the inertial measurement unit of
mobile devices with state-of-the-art techniques [36]. And the
estimated speed information is presented in Fig. 7. Then we
segment original geomagnetic sequence into many small sub-
sequences. Based on estimated user speed in each segment, we
stretch or squeeze the subsequences to a standard length that
corresponds to the reference speed. Finally, we concatenate
these stretched or squeezed subsequences together so that
geomagnetic sequences with different scales are mapping to a
uniform standard as shown in Fig. 9.

2) Multi-scale spatial feature extraction. To enhance the

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2021.3113333

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2020 6

 

an

Fig. 10: Spatial representation and corresponding feature extraction.

distinctiveness of spatial location clues, we propose a spatial
representation of magnetic sequence and design a multi-scale
spatial feature extraction (MSFE) model. We first convert
input geomagnetic sequence into a high dimensional geo-
magnetic heatmap, a spatial representation where each pixel
is corresponding to a spatial position. The resulted heatmap
is able to provides more regional correlations of distributed
signal observations compared with low dimensional sequence.
Then we utilize a specially optimized ResNet to extract more
distinctive spatial feature from the heatmap for localization.
Details of MSFE is presented in Section IV-B.

3) Hierarchical temporal feature extraction. Intuitively, we
take advantage of state-of-the-art LSTM model to extract
temporal features. Nevertheless, it is still hard in practice
to efficiently correlate from the first to last instance for a
long sequence by feeding the sequence to a LSTM model
directly. And the serial processing for a long sequence is
also time consuming. Therefore, we devise a hierarchical
structure, employing sequence segmentation and parallel pro-
cessing mechanism to efficiently extract temporal features
while reducing overall time overhead. Furthermore, we adopt
a bidirectional LSTM (BiLSTM) to enhance the extracted
features. And Details are illustrated in Section IV-C.

4) Ensemble learning based position estimation. With ex-
tracted spatial and temporal features, we concatenate them
to generate more distinctive fusion features for localization.
Moreover, we employ ensemble learning mechanism to further
improve the robustness and accuracy of ST-Loc. To be specific,
we train multiple independent models based on proposed
network with different initial settings, from which we can
obtain multiple predictions of position. Furthermore, we de-
sign a weighted k-NN (k-nearest neighbors) based algorithm to
integrate those predictions to get the final estimation position.
Details of ensemble learning based position estimation will be
elaborated in Section IV-D.

B. Multi-scale spatial feature extraction

1) Spatial representation of the geomagnetic sequence:
Considering that discrete and low dimensional signal finger-
print lacks sufficient spatial distinctiveness, we propose a
spatial representation of input signal, converting raw signal
sequence into a high dimensional heatmap so as to obtain
more regional correlations of distributed signal observation.

In this paper, we convert a raw geomagnetic sequence into
a geomagnetic heatmap, where each pixel denotes a single
geomagnetic measurement in the sequence and pixel value
corresponds to intensity of the measurement. As shown in
Fig. 1, a geomagnetic sequence collected while the user
walking is converted into a geomagnetic heatmap. And we
conceive of a local window (denoted by red block in Fig. 1)
in the resulted heatmap, rows of which are actually sub-
portions of original geomagnetic sequence and corresponding
to a sequence of spatially distributed locations in a local
region. So employing convolution to patches of the heatmap,
we are able to extract features that represent spatial clues of
geomagnetic measurements distributed in a local region. And
these regional correlations will provide more distinctiveness
to construct spatial features for localization.

More specifically, as shown in Fig. 10, a single geomagnetic
measurement usually consists of values in three axes (X,Y
and Z). For a collected geomagnetic sequence S of length q,
which has been pre-processed as elaborated in Section IV-A:

S = {m1 m2,m3, ...,mq}, (1)

where mi = (xi, yi, zi) denotes a processed single geomag-
netic observation including signal reading values in three axes.
We first reshape it to a three-dimensional rectangular matrix,
then normalize all elements of the matrix to RGB color space
[0, 255] as following:

Smatrix =


m1 m2 · · · mu

mu+1 mu+2 · · · mu+u

...
...

...
...

mu(v−1)+1 mu(v−1)+2 · · · muv

 , (2)

S̃matrix =
255 · (Smatrix −Min(Smatrix))

Max(Smatrix))−Min(Smatrix)
, (3)

where u, v denote the width and height of the matrix (uv = q),
and Max(·), Min(·) denote Maximum function and Minimum
function respectively.

With normalized geomagnetic matrix s̃matrix, we convert
it into an RGB-channels image, in which the values (r, g, b)
of a pixel in three channels are corresponding to the values
(x, y, z) of an element (a single geomagnetic measurement) in
the matrix.
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2) Optimized residual neural network: ST-Loc employs
an optimized ResNet to extract features from geomagnetic
heatmaps following transfer learning mechanism. ResNet tries
to address the notorious vanishing gradients problem where
gradients decrease slowly, preventing weights from changing
their values. To address this, researchers realize ResNet with
shortcut connections, where they skip one or several layers to
achieve higher accuracy with more layers. We refer interested
readers to [17] for more details.

Benefiting from the residual structure, ResNet has achieved
superior accuracy in various image processing tasks. However,
original ResNet is primarily adopted to processes natural
images, which are fundamentally different from geomagnetic
heatmaps in terms of image properties and task objectives.
According to the empirical study in transfer learning [37],
the activations in ResNet are too concentrated around the
object (i.e., only features tightly related to the source domain
have strong responses) when FC (fully connected) layers are
missing. This relationship makes it inappropriate to transfer
to a target domain if the source and target are distant from
each other. But the models with FC layers show a different
property. The distributed activations enable them to capture
useful image features in the target domain when the target
is dissimilar to the source domain. So the research [37]
concludes that when image properties or task objectives in
the source domain are far different from those in the target
domain, it is essential to add FC layers in pre-trained model
of the source domain. Hence, ST-Loc takes original ResNet
which is pre-trained on ImageNet [38] as foundation, then
replaces original classification layer with extra FC layers,
normalization layers and non-linear activate function layers.
Finally, using geomagnetic heatmaps as training data, we fine-
tune the reconstructed ResNet for feature extraction.

More specifically, as illustrated in Fig. 10, the final clas-
sification layers of original ResNet are removed firstly, then
the remain of the network will output a 512-D feature vector
fS . Subsequently, we map this 512-D feature vector to higher
dimensional vector by inserting a 2048-D FC layer [37]
followed by a batch normalization layer. Finally, we add a
rectified linear unit (ReLU) as non-linear activate function.
The process is as following:

f̃S =W fS + b, (4)

fSnorm =
γ√

V ar[f̃S ] + ε
· f̃S + (β − γE[f̃S ]

V ar[f̃S ] + ε
), (5)

FS = η ·ReLU(fSnorm), (6)

where E[·] and V ar[·] denote mean and standard deviation
respectively, and W, b, β, γ, ε and η are learnable parameters.

Finally, with fine-tuned ResNet, we extract multi-scale
spatial feature FS from the geomagnetic heatmap.

C. Hierarchical temporal feature extraction

1) Temporal representation of the geomagnetic sequence:
In a plenty of fingerprint-based approaches, position estimation
is entirely independently based on a single signal fingerprint
(a signal measurement). Unfortunately, those approaches are
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Fig. 11: Temporal representation and corresponding feature
extraction.

usually prone to feature ambiguity and easily impacted by
random noise, especially in large indoor scene. In practice,
geomagnetic signal collected by devices is actually an ordered
geomagnetic signal observation sequence over time dimension,
in which each geomagnetic signal measurement is associated
with other adjacent measurements. As shown in Fig. 4, such
correlations (sequential fluctuation trend) of geomagnetic sig-
nal sequence is especially obvious and distinctive in complex
indoor environment. Extracting and applying these temporal
correlations and continuity constraints in geomagnetic signal
sequence can effectively improve the distinguishability of
location features. Intuitively, we propose to take advantage of
consecutive geomagnetic sequence (a temporal representation)
as input instead of discrete signal measurements. Then we
are able to extract such temporal correlations and continuity
constraints which provide more distinctive location clues in
temporal dimension.

2) Hierarchical bidirectional LSTM: In order to capture
these temporal correlations and continuity constraints, we em-
ploy state-of-the-art LSTM model in ST-Loc. Bringing in gate
mechanism, LSTM address the vanishing gradient problem
and makes an improvement on standard RNN. Benefiting
from this mechanism, LSTM model is able to learn long-
term dependencies of input sequence, which usually applies
following operations at each timestep:

ft = σg(Wfxt + Ufht−1 + bf ), (7)
it = σg(Wixt + Uiht−1 + bi), (8)
ot = σg(Woxt + Uoht−1 + bo), (9)
c̃t = σc(Wcxt + Ucht−1 + bc), (10)
ct = ft ◦ ct−1 + it ◦ c̃t, (11)
ht = ot ◦ σh(ct), (12)
yt = σo(Wyht + by), (13)

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2021.3113333

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2020 8

where xt and ht represent the input and hidden state at time
t. And σ denotes the non-linear activation function. W,U and
b are the learnable parameters. f, i, o represent forget gate,
input and output reset gates respectively, and c is a memory
cell state. The cell in LSTM is able to keep, update or forget
feature information over time by these gates.

However, for a long input sequence, it is still hard in practice
to efficiently correlate from the first to last instance by using a
LSTM model directly. At same time, the serial processing for a
long sequence is also time consuming. Therefore, we devise a
hierarchical structure, as presented in Fig. 11, we first segment
a long geomagnetic sequence into many subsequences and
extract the temporal features of these local subsequences with
low-level LSTM respectively, then we take these extracted
features as input of a high-level LSTM to extract global
temporal features in higher dimensions. More specifically, we
segment input sequence with specific scale to get subsequence
set {s1, s2, ..., sn}. Then for these local subsequences, we
extract the temporal features respectively, e.g., in the case of a
local subsequence si, we extract corresponding local temporal
feature fi. Then extracted local features {f1, f2, ..., fn} will be
taken as input of a high-level LSTM to extract global temporal
features. Applying this hierarchical structure, each LSTM unit
in the network processes shorter subsequence, which means
that it is able to keep more detail features and reduce loss
of information that easily occurs in long sequence processing.
At same time, with this sequence segmentation and parallel
processing mechanism, we can effectively reduce the average
time overhead of temporal feature extraction.

Furthermore, considering both past and future contextual
temporal correlations of signal sequence, we make use of a
bidirectional LSTM (BiLSTM) scheme to enhance the ex-
tracted local temporal features {f1, f2, ..., fn}. As illustrated
in Fig. 11, BiLSTM takes the ordered feature sequence
{f1, f2, ..., fn} as input. Then we get the enhanced local
temporal features {f̃1, f̃2, ..., f̃n} which involve both past and
future contextual temporal dependencies. The bidirectional
LSTM has same state equations as Equation 7-13, but uses
both forward and backward hidden states at each timestep as
following:

f̃i = BiLSTM([hf
i ,h

b
n−i], fi), (14)

hf0 (x) = hb0(x) =
1√
2π
e−

x2

2 , (15)

where hf and hb denote the forward and backward hidden
states respectively. And we initialize the hidden state with a
standard Gaussian Function.

Finally, we take enhanced local temporal features as input
and utilize a high-level LSTM to extract global temporal
feature FT , then map FT to fixed size for feature fusion.

D. Ensemble learning based position estimation

1) Motivations for applying ensemble learning mechanism:
In the supervised learning algorithm of machine learning,
the goal is to learn a stable model with good performance.
However, suffering from random noise or outliers of training
data, sometimes we can find several different models with

Models’ initial prediction location under initial parameters

Final prediction location after training convergence 

Ground truth location corresponding to the input

The change of the prediction location during model training
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Fig. 12: Schematic diagram of ensemble learning based local-
ization that training multiple independent models and integrat-
ing their prediction results for joint position estimation.

distinct predilection after training with different initial settings,
which almost give same accuracy on the training dataset. From
a statistical point of view, the effect of those factors can be
reduced when the amount of training data is large enough. For
indoor localization, considering inevitable existence of various
random noises and outliers in collected signals, we can repeat
site survey enough times to obtain more sufficient training
data. So there will be multiple redundant signal measurements
for each survey path in the trial site, and the effect caused by
noise and outliers can be effectively reduced though statistical
method.

While the training data is sufficient enough (so that the
effect mentioned above is absent), however, it has to face an-
other challenge that computational cost is usually unacceptable
when dataset is enormous as the optimal training of neural
networks is proved to be NP-hard [39]. At same time, it’s
also labor-intensive and time-consuming to do vast repeated
site surveys to obtain sufficient enough training data which is
usually redundant.

To address above, we employ ensemble learning mecha-
nism. With different initial training setting, we train proposed
network to get multiple independent models, which have
different degree of sensitivity to signal noise and outliers
but almost share same accuracy on training dataset after
convergence. Then the estimation algorithm will take all these
models’ predictions into consideration and make an average
among prediction results so as to reduce the risk of choosing
single prediction with large random error. The underlying idea
is that even if one single sub-model gets prediction with large
error, other sub-models can correct the error back. Thus we
can efficient reduce large deviations which usually caused by
signal noise and outliers.

In this paper, we set different initial parameters for training
multiple independent models based on Gaussian distribution.
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Algorithm 1: Find the optimal k
Input:

Strain representing the train dataset;
Sval representing the validation dataset;
r representing preset number of trained models;

Output:
Optimal k representing the number of selected
models in weighted k-NN based algorithm;

1 Train the proposed ST-Loc on dataset Strain with
different initial parameters to obtain r independent
models {model1,model2, ...,modelr};

2 for each modeli (1 ≤ i ≤ r) do
3 for each testcase in Sval do
4 Obtain the corresoding prediction location

though modeli;

5 Calculate the mean prediction error ei of modeli
on whole Sval as Equation 24;

6 for j in range(1, r + 1) do
7 Find j least prediction errors in {e1, e2, ..., er} and

obtain correaponding j models;
8 Calculate weights of j models obtained above as

Equation 18 and 19 ;
9 for each testcase in Sval do

10 Obtain the prediction locations of j selected
models above, respectively;

11 Calculate the weighted average prediction
location for the testcase as Equation 20 ;

12 Calculate mean prediction error on whole Sval

with j selected models as Equation 24;
13 Find the optimal k with which ST-Loc could achieve

minimum mean localization error on Sval;
14 final;
15 return optimal k;

More specifically, for each layer of a training model, we set
initial parameters based on a Gaussian distribution as follows:

Paras ∼ N(µ, σ2), (16)

and its probability density function is defined as:

f(x) =
1

σ
√
2π
e−

(x−µ)2

2σ2 , (17)

where µ ∈ [−1, 1] and σ2 ∈ (0, 10], which are chosen
at random from the corresponding range for each different
training model.

Fig. 12 illustrates a schematic example of position esti-
mation in this situation. For an input signal sequence, we
can first obtain the corresponding initial prediction start-
ing location {p1, p2, ..., p5} of multiple independent mod-
els {model1,model2, ...,model5} with different initial pa-
rameters. And we use dotted line to indicate the conver-
gence process of model’s predicted position during itera-
tive training, adopting gradient descent optimization method.
{p̃1, p̃2, ..., p̃5} denote the final prediction locations of those

Algorithm 2: Weighted k-NN based voting for final
position estimation
Input:

Stest representing the test dataset;
{modeli|i = 1, 2, ..., r} representing r models
trained with different initial parameters;
k(k ≤ r) representing the optimal number of
selected models for joint position estimation;

Output:
Position estimation for every testcase in Stest

1 Find k models with least mean validation error in r
independent trained models {modeli|i = 1, 2, ..., r};

2 Calculate corresponding weights of k selected models
above as Equation 18 and 19 ;

3 for each testcase in Stest do
4 Obtain the prediction locations of k selected

models above, respectively;
5 Calculate weighted average prediction location for

the testcase as Equation 20;

6 final;
7 return Position estimation for every testcase in Stest;

trained models after model convergence and green star rep-
resents the corresponding ground truth location. As we can
see in Fig. 12, these models’ final predictions more or less
deviate from ground truth location which mainly suffers from
random noise and signal outliers. Intuitively, integrating these
independent location prediction models, we can obtain a more
accurate prediction of target location by taking an average
among their prediction results.

In summary, we apply ensemble learning mechanism in final
position estimation, and we train multiple different models
independently and combine them to generate a more robust
and comprehensive ensemble model, which is able to effec-
tively reduce the impact of noise and outliers, achieving higher
accuracy and robustness without large amount of redundant
training data collection.

2) Weighted k-NN based voting for position estimation:
Based on ensemble learning method, we train multiple models
independently with different initial settings. So for each input,
we can obtain multiple corresponding prediction locations. To
further improve the accuracy and robustness of prediction, we
design a weighted k-nearest neighbors (k-NN) based algorithm
on those prediction results to calculate the final estimation
location for the input. First of all, we need to find a heuristi-
cally optimal number k of nearest neighbors, and the details
are shown in Algorithm 1. Then we select k models with
the smallest average validation error from all trained models
and calculate final prediction location among those selected
models’ prediction results.

More specifically, as shown in Algorithm 2, suppose we
have selected k models out of r trained models (r denotes
the preset number of trained models), then for an input
sequence, we get the corresponding prediction locations of
the selected models: {L1,L2, ...,Lk}. Furthermore, we set
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Fig. 13: Floorplans of the trial sites.

adaptive weight for each selected model’s prediction according
to model’s average validating error. And we choose Gaussian
function as Error-Weight transition function and then make a
normalization as follows:

w̃i =
1√
2π
e−

di
2

2 , (18)

wi =
w̃i∑k
j=1 w̃j

, (19)

where wi is the weight of the corresponding prediction and
di is the average validation error of the corresponding model,
and i ∈ {1, 2, ..., k}. Then, we calculate weighted average of
k selected models’ prediction locations:

L =

k∑
i=1

wiLi, (20)

Finally, we get a more accurate final prediction location L
for the input geomagnetic sequence.

E. Time complexity analysis
As an important requirement in indoor localization appli-

cation, real-time performance is always need to be paid more
attention. Traditional fingerprint-based approaches mostly rely
on signal matching strategy utilizing discrete signal observa-
tion or successive signal sequence. And the time overhead for
localization largely depends on the matching algorithm and
the size of database used for matching.

Dynamic Time Warping (DTW) is a widely used technique
to measure the similarity between two sequences, which
considers both stretching and squeezing the sequences to
align them. Making use of signal sequence as input, some
approaches [26], [29], [40] leverage DTW algorithm as signal
matching strategy for indoor localization. DTW algorithm uses
dynamic programming to calculate the similarity between two
time sequences, and the time complexity can be expressed as:

O(n2), (21)

where n denotes the length of the input sequence. For indoor
localization, it needs to compare observed signal sequence
with each signal fingerprint in pre-established database though
iteration and infer current location with the most similar geo-
tagged fingerprint. Suppose the size of the database is m (the
number of fingerprints that need to be matched with), then the
time complexity for localization based on this mechanism:

O(m · n2), (22)

As discussed above, those iterative matching-based ap-
proaches usually incur high time overhead during localization,
especially when it needs to use relatively long signal sequences
for sufficient accuracy or the database for matching is enor-
mous in the large indoor scene.

In this paper, ST-Loc employs deep learning technique to
establish an end-to-end system and realize offline learning
and online calculation of proposed localization model. Al-
though deep learning methods is data-hungry which usually
need large number of trainings to learn sufficient knowledge,
time-consuming offline training only need to be conducted
once generally. Then the online localization can continuously
proceed without extra time-consuming model training. That’s
once and for all. On the other hand, we always pay more atten-
tion to online localization performance in actual application.
And the trained model contains only simple linear and nonlin-
ear transformation units, and the computational complexity of
these operations is also lower. In addition, the computational
complexity of employing trained model is also independent of
the size of the database. Therefore, ST-Loc is able to greatly
reduce the time overhead during online localization compared
with matching-based approach mentioned above, providing a
guarantee for real-time localization service.

Compared with other approaches [31], [33] which utilize
deep learning technique, ST-Loc further devise a hierarchical
structure for temporal feature extraction as elaborated in
Section IV-C. Through the sequence segmentation and parallel
processing mechanism, each basic LSTM unit in the network
processes a relatively shorter sequence, and the unit at lower
level can pay more attention to the local temporal feature of the
corresponding subsequence. At same time, parallel processing
can also effectively reduce the time overhead of the network.

V. ILLUSTRATIVE EXPERIMENTAL RESULTS

In this section, we evaluate the performance of ST-Loc and
state-of-the-art comparison schemes. We present dataset and
experimental settings in Section V-A, followed by comparison
schemes and evaluating metrics in Section V-B. Then the
experimental results are illustrated in Section V-C and we
finally analyze system overhead in Section V-D.

A. Dataset and experimental settings

We have conducted extensive experiments in three trial sites
including an office area in our university, a spacious food
court and a supermarket. The site plans are shown in Fig. 13.
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TABLE II: Datasets established in three trial sites

Parameter

Dataset Office Area Food Plaza Supermarket

train test train test train test

Length of a Sequence 500 500 500 500 500 500

Number of Sequences 2390 770 1952 482 496 244

The supermarket area covers around 720 m2, the office area
covers around 2,800 m2 and the food plaza is more spacious
which covers around 3,500 m2. Without loss of generality, we
also conduct our experiments on a variety of mobile devices
(including Samsung Galaxy S7, Samsung Galaxy C5, Huawei
Mate 9 and Xiaomi Mi 6). Meanwhile, we also invite multiple
volunteers to participate in our experiments to evaluate the
performance of ST-Loc.

Suffering from signal instability and multipath fading effect,
RSS (Received Signal Strength) usually needs to be measured
several time. Compared with RSS, geomagnetic signal is much
more easier to collect, benefiting from stable geomagnetic
signal distribution. And most mobile devices are equipped
with high sensitivity magnetic field sensors which are able
to achieve sampling frequency up to 100 Hz. In experiments,
the signal sampling frequency of all devices is set to 50 Hz
to achieve trade-off.

In order to build dataset for experiments, we develop a
signal collection application based on Android system. The
application collects various signals including geomagnetic
signal strength and IMU (Inertial Measurement Unit) sensor
data (IMU data is only needed for some comparison schemes).
When surveyors walk though a preset survey path, the ap-
plication will collect various signals along the path, then we
can obtain a mixed signal sequence which corresponds to the
survey path:

{v1,v2,v3, ...}, (23)

where vi = 〈mi,ai,gi,oi〉 in which mi denotes geomagnetic
signal strength and ai,gi,oi represent acceleration vector,
gyroscope angles and orientation angles respectively.

In terms of dataset annotation for experiments, the collected
geomagnetic sequence covers a path, so we label the sequence
with the ground truth location coordinate where the last
geomagnetic sample is collected. More specifically, we mark
the locations of starting and ending points of each survey path
based on nearby landmarks, e.g., doors, corners. Then, we
label the ending locations of each signal segment based on
distances to nearest landmarks. Note that in indoor trial sites,
the number of these landmarks are usually large. Our data
annotation benefits from this with higher accuracy. For training
dataset, we have designed dense survey paths (denoted by red
solid lines in Fig. 13) in public areas according to the floor-
plans of three trial sites and we collect signal sequences along
those survey paths in three trial sites for training, respectively.
As for testing dataset, experiment participants are requested to
walk though some randomly chosen paths with mobile device
in trial sites, then we use signal sequences collected in three
trial sites for evaluation, respectively. Table II presents the
detailed information of the datasets in three trial sites.

TABLE III: Baseline training parameters in experiments

Parameter

Trial Site
Office Area Food Plaza Supermarket

Iterations 500 300 300

Mini-batch 125 125 125

Initial Learning Rate 0.005 0.002 0.001

Weight Decay 2e-4 2e-4 2e-4

We train proposed ST-Loc separately with training dataset
built for each trial site and evaluate its performance in corre-
sponding site, respectively. And baseline training parameters
are presented in Table III. We choose PyTorch as deep learning
framework in experiments and use Adam as deep network’s
optimizer. MSELoss is set as loss function. All experiments
are performed on a simulation server installing Ubuntu 16.04
system with four Nvidia RTX 2080Ti GPU cards, an Intel
Xeon E5-2640 CPU and 128 GB memory.

B. Comparison schemes and evaluating metrics
We compare ST-Loc with following state-of-the-art indoor

localization methods which use geomagnetic signal as input:
• MaLoc [27] devises a reliability-augmented particle filter

to improve the accuracy and robustness of position es-
timation. Furthermore, it proposes an adaptive sampling
algorithm to reduce computation overhead so as to im-
prove the overall usability.

• Magicol [29] overcomes the low discernibility of the
geomagnetic signal by vectorizing consecutive geomag-
netic measurements. It calibrates user positions with a
bi-directional particle filter and uses the vectors to shape
the particle distribution in position estimation process.

• RNN-4 [33] also takes geomagnetic sequence as input.
And it trains a standard RNN to predict user position. In
our experiment, we build a deeper network with 4-layer
RNN as a comparison scheme.

Moreover, in order to evaluate the effectiveness of core
function components in proposed model including spatial
and temporal feature extraction modules, we also take the
following variants of the model into comparison:

• ST-Loc-ns: We remove the spatial feature extraction mod-
ule from the network and only use temporal features for
localization, by which we can validate the effectiveness
of extracted spatial features.

• ST-Loc-nt: On the contrary, to validate the effectiveness
of extracted temporal features, We remove the temporal
feature extraction module from the network.

We make use of overall mean localization error e as uniform
evaluation metric in experiments. Suppose we have N test
cases, ground truth locations of which are x1,x2, ...,xN .
And the estimation position of each corresponding test case
is denoted by x̂n(1 ≤ n ≤ N). Then the overall mean
localization error e is defined as following:

e =
1

N

N∑
n=1

||x̂n − xn||2, (24)

where || · ||2 denotes L2 norm.
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Fig. 14: Cumulative distribution function
of indoor localization error in the office
area.
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Fig. 15: Mean localization error versus
models trained with different initial pa-
rameters in the office area.
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Fig. 16: Mean localization error versus
different k in weighted k-NN based loca-
tion estimation in the office area.
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Fig. 17: Cumulative distribution function
of indoor localization error in the food
plaza.
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Fig. 18: Mean localization error versus
models trained with different initial pa-
rameters in the food plaza.
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Fig. 19: Mean localization error versus
different k in weighted k-NN based loca-
tion estimation in the food plaza.
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Fig. 20: Cumulative distribution function
of indoor localization error in the super-
market area.
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Fig. 21: Mean localization error versus
models trained with different initial pa-
rameters in the supermarket area.
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Fig. 22: Mean localization error with dif-
ferent k in weighted k-NN based location
estimation in the supermarket area.

C. Experimental results

To evaluate the performance of ST-Loc and state-of-the-art
competing approaches, we conduct extensive experiments in
three typical trial sites. Fig. 14, Fig. 17 and Fig. 20 illustrate
the CDF of localization errors in office area, food plaza and
supermarket area respectively. And Table IV presents mean
localization error of different approaches (including prelimi-
nary version [34] of ST-Loc) in three trial sites. The results
demonstrate that proposed ST-Loc is able to achieve higher
localization accuracy than competing schemes in all three trial
sites. This is mainly because ST-Loc converts original geo-
magnetic sequence into spatial and temporal representations
and considers both corresponding location correlations. Based
on this, ST-Loc extracts and generates more comprehensive
and distinctive spatial-temporal fusion features for localization,

thus is able to achieve higher overall accuracy. Meanwhile,
ST-Loc does not make use of the motion sensors of mobile
devices, so there’s no need to consider the impact of compli-
cated user’s behaviors on the motion sensors, thus avoiding
accumulative error.

However, comparing the localization results in three sites
which are shown in Fig. 14, Fig. 17 and Fig. 20, we find
that ST-Loc performs better in office area. This is because
office area has many narrow corridors and partitions, and a
narrow indoor environment like that will cause strong signal
variations locally, which provides much promise for more
accurate localization. Meanwhile, we notice that the result in
supermarket (as shown in Fig. 20) has long tails compared
with the results in other two trial sites. It is because that the
supermarket area is not only more spacious, but its indoor
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(a) Raw geomagnetic signal.
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(b) Extracted spatial feature.
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(c) Extracted temporal feature.
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(d) Fusion feature.

Fig. 23: Signal/Feature differences between the locations which are uniformly selected in an office area.
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Fig. 24: CDF of localization error with
different devices in office area.
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Fig. 25: The distribution of localization
errors with different users in office area.
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Fig. 26: Time cost for temporal feature
extraction with different sequence length.

environment is highly similar as shown in Fig. 13 (c). For that
reason, it more likely has similar geomagnetic disturbances
in different local areas, which incurs signal ambiguity. Thus,
the localization error in some cases is larger compared to
constrained area like office environment.

To further enhancing the accuracy and robustness of ST-Loc,
we apply ensemble learning mechanism in proposed network.
As shown in Fig. 15, Fig. 18 and Fig. 21, we trained 20 models
with different initial parameters for each trial site respectively
as we discussed in Section IV-D. For a single model, different
initial parameters lead to distinguishing results, which mainly
suffers from input signal noise and outliers. Therefore, we
take multiple models’ prediction result into consideration.
Furthermore, We devise weighted k-NN based voting among
those models, and different values of k lead to different
results in three trial sites as illustrating in Fig. 16, Fig.19
and Fig. 22, which mainly depends on corresponding indoor
environment. Looked from the overall, the experimental results
above demonstrate that ST-Loc is able to achieve higher
accurate and more robust localization results with ensemble

TABLE IV: Mean localization error versus different approach
in three trial sites (m).

Approach

Trial site
Office Area Food Plaza Supermarket

ST-Loc 0.49 1.04 1.45
Preliminary ST-Loc 0.65 1.26 1.55

RNN-4 1.81 2.19 2.73

Magicol 2.19 5.64 3.76

MaLoc 3.34 5.05 4.56

learning mechanism compared to preliminary version of ST-
Loc. However, we notice that the diversity between learners is
smaller with the increase in individual learner, and ensemble
learning accuracy is worse, which mainly suffers from the
limitation of dataset [41]. Therefore, we can choose a optimal
value k for each specific trial site according to experimental
validation results. For example, optimal k is set to 9 for the
food plaza according to results shown in Fig.19.

In order to evaluate the effectiveness of extracted features
and feature fusion, we collect geomagnetic measurements at
101 positions which are uniformly distributed in the office
area. And we take advantage of pairwise matrix to evaluate the
differences of raw signal or extracted features between these
101 selected location. The results are illustrated in Fig. 23
respectively, in which dark color indicates low degree of
difference and light color indicates high degree of difference.
And the average values of the difference pairwise matrix for
raw signal, extracted spatial feature, extracted temporal feature
and fusion feature are 0.18, 0.29, 0.38, 0.43, respectively. As
shown in Fig. 23 (a), raw geomagnetic signal at some distant
locations can be similar (around location 60 to 80), leading
to large localization error in the approach based on signal
fingerprint matching. In ST-Loc, we convert raw geomagnetic
signal into spatial and temporal representations and extract
the corresponding features respectively. And as shown in
Fig. 23 (b) and (c), the degree of difference between extracted
spatial/temporal features in these locations has improved sig-
nificantly, compared with the result in Fig. 23 (a). On the other
hand, comparing Fig. 23 (b) and (c), we can find that spatial
features imply more regional differences between the locations
and temporal features reflect more consecutive differences
between the locations, which confirms our previous analysis in
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Fig. 27: Mean localization error with dif-
ferent length of input magnetic sequence.
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Fig. 28: Mean localization error with dif-
ferent layers of ResNet in ST-Loc-nt.
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Fig. 29: Mean localization error with dif-
ferent mini-batch sizes during training.

Section IV. Finally, as presented in Fig. 23 (d), we are able to
further increase the distinctiveness of features and enlarge the
differences between distant locations by fusing the spatial and
temporal features together (many dark areas are turned into
light in the figure after feature fusion). So the results prove
that our framework is able to enhance the distinctiveness of
features for localization.

Fig. 24 illustrates CDF of localization error when using
different devices for localization in office area. As discussed
in Section IV-A (1), different devices usually have different
calibrations for magnitude of geomagnetic field intensity (pre-
sented in Fig. 4). However, the experimental result shows that
ST-Loc is able to achieve high localization accuracy even with
those different devices. It demonstrates that ST-Loc is able to
effectively solve the device heterogeneity problem. The reason
is that ST-Loc uses gradient sequence as input instead of raw
geomagnetic sequence, using the fluctuation trend of signal
sequence as location clues to avoid the extra effort to calibrate
different device or sensors to a uniform standard.

Fig. 25 shows the distribution of the localization errors
with different experimental participants (include both male and
female, height from 163 cm to 181 cm). And the results show
that proposed ST-Loc achieves almost comparable localization
accuracy even with different users while the mean localization
errors are all less than 1 m. This is because ST-Loc conducts
data pre-processing for collected signal sequences before lo-
calization to resolve the user heterogeneity problem, which has
been elaborated in detail in Section IV-A (1). Thus, ST-Loc is
able to achieve high applicability with different users.

Fig. 26 presents the time consumption for temporal fea-
ture extraction of ST-Loc-ns and the basic LSTM model. It
demonstrates that proposed framework (illustrated in Fig. 11)
achieves lower time consumption in temporal feature extrac-
tion, compared with the basic LSTM model. Meanwhile, as we
use longer input geomagnetic sequence, the time consumption
of the LSTM model increases while the time cost of ST-
Loc-ns increases more slowly. This is because we devise a
hierarchical structure and employ a segmentation and parallel
processing mechanism. Therefore, the time overhead with the
segmented subsequences is relatively lower compared with the
original long sequence. On the other hand, parallel processing
of the shorter subsequences also reduces the loss of feature
information that easily occurs in serial processing of the long
sequence.

Fig. 27 shows the localization accuracy when use different
number of geomagnetic readings (the length of input geomag-
netic sequence). As we can see, ST-Loc is able to achieve
higher accuracy with more geomagnetic readings. The reason
is that more signal readings (longer signal sequence) usually
cover longer path with more local unique signal fluctuation.
Hence the neural network is able to learn more location clues
from those unique fluctuation. However, when the number
of geomagnetic readings exceeds 500, the decrease of error
slows down, which means that we have sufficient information
to extract location clues with 500 geomagnetic readings. But
more readings or longer sequences mean that it will take more
time to collect and calculate for localization. Therefore, to
achieve trade-off between time overhead and accuracy, we
take the 500 signal readings as input (the length of input
geomagnetic sequence is set to 500).

Fig. 28 presents the mean localization error when making
use of different depths of RseNet in ST-Loc-nt. The result
shows that the overall localization error decreases when use
deeper ResNet. This is mainly because deeper network which
have more layers is more capable to learn a robust feature from
the input. However, we notice that the average localization
error increases slightly when the number of the network layers
reaches 50, which indicates that the network may have over-
fitting. At the same time, deeper network also requires more
time for training to convergence. Therefore, to achieve trade-
off between training time, training effort and accuracy, we take
advantage of ResNet-34 in proposed model.

Fig. 29 illustrates the change process of localization error
during training when applying different mini-batch sizes. As
shown in the figure, the error decreases quickly in the first 100
epochs, then the decrease slows down. Finally model training
converges after 500 epochs. Applying small mini-batch size
means that ST-Loc will run more iterations in each epoch.
So the model learns to adapt training data via more forward
and backward propagations in each epoch, thus achieving
smaller localization error in initial epochs. But small mini-
batch size also leads to less local training data in each iteration,
causing more fluctuations during training consequently. On the
contrary, the number of iterations in each epoch is fewer when
employing larger mini-batch size, leading to larger localization
error in initial epochs but with fewer fluctuations. Therefore,
to achieve trade-off, we set mini-batch size to 125 and the
total number of epochs is 500 in our experiments.
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D. System overhead

To evaluate the system overhead of ST-Loc, we have im-
plemented it under client-server mode. The client is developed
on Android system. And in experiments, the signal sampling
frequency of the client is set to 50 Hz, which means that 50
signal samples (less than 2 KB) are sent to server every second.
Correspondingly, the server will apply pre-trained localization
model to estimate the current position after receive sufficient
signal data from the client, then send back the results.

We use a 100 Mbps Wi-Fi router to provide the network
connection, via which the average network transmission time
is less than 0.0033s in experiments. Based on the above
settings, we evaluate the localization responding time of ST-
Loc and state-of-the-art competing approaches. Specifically,
we take more than 1000 random chosen test cases to calculate
the the average responding time as evaluation indicator. And
the results are shown in Table V, which demonstrates that
ST-Loc outperforms competing approaches with only 0.036s
average responding time and it’s enough to achieve real-time
localization services.

TABLE V: Time overhead versus localization approaches.

Approach ST-Loc RNN-4 MaLoc Magicol

Average responding time (s) 0.036 0.061 0.232 1.357

In term of energy consumption, we use the application
power consumption records of the operating system as evalu-
ation criterion. In experiments, we record the system power
consumption of the client, which is most related to users.
After 30 minutes of the simulated localization with ST-Loc, we
record 6% drop in the battery status of test phone (Samsung
Galaxy S7e with battery capacity of 3600 mAh). So the total
energy consumption is around 216 mAh and the average power
consumption per minute is 7.2 mAh. Therefore, using the
client implemented based on ST-Loc will not consume too
much power for location query. On the other hand, the current
version of the client application has not yet been optimized
well for energy efficiency and the signal sampling frequency
is relatively high. So we can reduce the energy consumption by
reducing the signal sampling frequency when collected signal
data sufficiently meet actual needs of localization.

VI. CONCLUSION

Fingerprint-based indoor localization with either spatial or
temporal location clues are prone to signal ambiguities or
high time overhead, which hinders its widespread application.
In view of the above, we propose to convert a single signal
sequence into multiple adaptive representations, and extract
features from each representation to form distinctive location
features for accurate localization. In this paper, we use ge-
omagnetic sequence as inuput. Firstly, we convert sequential
geomagnetic inputs into a heatmap, where we use convolu-
tional operations to find spatial correlations. At same time, we
devise a hierarchical bidirectional structure to extract temporal
correlations with both past and future context, achieving lower
time overhead. Then, we fuse the spatial and temporal features

together to enhance the distinctiveness of location features.
Finally, we employ ensemble learning mechanism and design a
weighted k-NN based location estimation algorithm to further
enhance the accuracy and robustness. We have conducted
extensive experiments in three different trial sites, the fifth
floor of a narrow office building, the third floor of a mall
and the second floor of a supermarket. Experimental results
in these sites show that our model reduces localization error
by a wide margin and achieves lower time overhead compared
with other state-of-the-art competing schemes.
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