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Knowing accurate indoor locations of pedestrians has great social and commercial values, such as pedestrian heatmapping and
targeted advertising. Location estimation with sequential inputs (e.g., geomagnetic sequences) has received much attention
lately, mainly because they enhance the localization accuracy with temporal correlations. Nevertheless, it is challenging to
realize accurate localization with geomagnetic sequences due to environmental factors, such as non-uniform ferromagnetic
disturbances. To address this, we propose MAIL, a multi-scale attention-guided indoor localization network, which turns
these challenges into favorable advantages. Our key contributions are as follows. First, instead of extracting a single holistic
feature from an input sequence directly, we design a scale-based feature extraction unit that takes variational anomalies at
different scales into consideration. Second, we propose an attention generation scheme that identifies attention values for
different scales. Rather than setting fixed numbers, MAIL learns them adaptively with the input sequence, thus increasing
its adaptability and generality. Third, guided by attention values, we fuse multi-scale features by paying more attention to
prominent ones and estimate current location with the fused feature. We evaluate the performance of MAIL in three different
trial sites. Evaluation results show that MAIL reduces the mean localization error by more than 36% compared with the
state-of-the-art competing schemes.
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1 INTRODUCTION
Knowing fine-grained indoor locations of pedestrians or robots enables compelling and intelligent services, such
as assisted living [24], healthcare [6] and crowd monitoring [16, 22], to name a few 1. Although Global Positioning
System (GPS) has achieved pervasiveness and high precision outdoors, it does not work well indoors due to the
block of building structures.
To address this, researchers study different signals for indoor localization, e.g., Wi-Fi, Bluetooth, visible light

communication. Of all these signals, geomagnetism emerges as a promising one, mainly because it is pervasive
and stable indoors over a long period of time. Furthermore, geomagnetism-based indoor localization systems
do not require the deployment of extra devices, such as wireless access points (APs) or light-emitting diodes
(LEDs), thus are more deployable. Additionally, geomagnetic anomalies, which are caused by local ferromagnetic
disturbances (e.g., iron doors, electrical wires and reinforced building structures), provide useful features for
location inferring [15].
Geomagnetic fingerprint is a fixed-length vector consisting of three values measured by a magnetometer. It

indicates current geomagnetic strength received at a specific location. Due to the stability of geomagnetism, the
discernibility of a single geomagnetic fingerprint is relatively low, leading to degraded localization accuracy [30,
32]. In light of this, researchers propose to leverage geomagnetic sequences to localize. Compared with a single
fingerprint, a geomagnetic sequence enhances the location discernibility with temporal correlations, leading to
higher localization accuracy. Geomagnetic anomalies, caused by nearby ferromagnetic disturbances, present
distinctive patterns. As these anomalies are distinguishing and are usually associated with specific locations,
they become geomagnetic landmarks [15].
Many existing sequence-based approaches compare user-collected sequences with geo-tagged ones in the

database based on the overall geometrical shape of geomagnetic sequences. Despite their accuracy, they are likely
to discard local anomalies, which are less significant compared with a sequence, leading to degraded discernibility
and compromised localization accuracy. We illustrate this in Figure 1, where the overall geometrical shapes of
two magnetic 2 sequences collected far away from each other (22m apart) in a long corridor are similar. However,
they are different from each other as the dashed one has a small-scale anomaly (in the red bounding box). This
demonstrates that we need to take both large-scale and small-scale anomalies into consideration for accurate
localization. A large-scale anomaly corresponds to a magnetic change that spans a long sequence (potentially
caused by a large ferromagnetic object), whereas a small-scale one corresponds to that caused by a small object.

In this paper, we propose to leverage various scales of anomalies (caused by different ferromagnetic disturbances)
in a geomagnetic sequence to localize. By detecting various scales of anomalies, we enhance the location
discernibility and improve the localization accuracy consequently. However, there are three major challenges in
realizing such a geomagnetic localization system:

• How to reduce the computational cost with long sequences? Some previous approaches extract holistic features
from inputs, such as the shape of a geomagnetic sequence [34, 37]. Then, they use shape comparison
algorithms, e.g., dynamic time warping (DTW) [4], which consider both stretching and squeezing collected
magnetic sequences and map them to geo-tagged ones for localization. However, this usually incurs
quadratic increase in computational cost by applying DTW directly to longer sequences [50].

• How to detect diversified anomalies simultaneously? In complicated indoor sites, geomagnetic anomalies
vary with scales due to nearby magnetic disturbances. Previous holistic shape-matching algorithms, such
as DTW, localize a target by finding the most similar geo-tagged geomagnetic sequences in terms of shapes.
It focuses more on the global shape and discards small local anomalies, leading to potentially large mapping

1Without loss of generality, either a human or a robot to be localized is viewed as a target in our paper.
2We use “geomagnetic” and “magnetic” interchangeably in this paper.
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Fig. 1. The geometrical similarities of geomagnetic sequences could lead to location confusion.

errors (Figure 1). It is also tedious to study magnetic anomalies indoors and design handcrafted detectors
accordingly.

• How to fuse features adaptively in localization? Due to varied source disturbances, anomalies in geomagnetic
sequences vary with scales significantly. Therefore, the contribution of each scale is not uniform across
trial sites or trial cases. Given a magnetic sequence, how to determine the importance of each anomaly
scale adaptively and fuse multi-scale features together remain a challenge.

To address above challenges, we propose MAIL, amulti-scale, attention-guided indoor localization network
with gradient sequences. Specifically, our key novelties are as follows:

• An efficient sequence-based localization framework: We propose an end-to-end efficient sequence-based
localization framework with little preprocessing overhead. With model training in the offline stage, our
algorithm achieves high accuracy and efficiency with multi-scale feature extraction. Experimental results
show that MAIL is capable of realizing real-time localization (more than 30Hz) in our trials.

• A scale-based feature extraction unit: We design a scale-based feature extraction unit, which segments
an input geomagnetic sequence based on the specific scale. As recurrent neural networks are capable of
extracting temporal correlations from sequences, we use them to extract a sequential feature from each
subsequence. Finally, we concatenate them together, generating a feature vector for each scale. Using
multiple scale-based feature extraction units, we get multi-scale features for a geomagnetic sequence.

• An attention-guided feature fusion and localization scheme: Since the attention mechanism is able to measure
the contribution of each scale to the localization, we propose an adaptive attention generation scheme that
estimates an attention value for each scale. Based on the estimated attention values, we fuse multi-scale
features together by paying more attention to important scales. Finally, we estimate the user location based
on the fused feature.

We have conducted extensive experiments in three different trial sites, a compact lab area with long corridors,
a spacious food court and an underground parking lot with large open space. Experimental results demonstrate
that MAIL reduces the mean localization error by more than 36% compared with state-of-the-art approaches
in our trial sites. In addition to indoor localization with geomagnetic sequences, our MAIL can also serve as an
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effective sequential feature extractor for input sequences, which can be easily incorporated into other applications
with different sequential inputs, e.g., location prediction [21] and intention anticipation [45].

The remainder of this paper is organized as follows. We review papers most related to ours in Section 2, followed
by the workflow of our localization system in Section 3. We elaborate the core design of the localization model in
Section 4 and give illustrative experimental results in Section 5. We discuss several deployment limitations in
Section 6 and conclude in Section 7.

2 RELATED WORK
Indoor localization has been extensively studied for decades. To achieve sufficient accuracy, researchers have
proposed various techniques using different discrete inputs, such asWi-Fi fingerprints [5, 19, 31, 49], Bluetooth [11,
39], ultra-wide band (UWB) [36], images/videos [25, 29, 38], visible light communication (VLC) [26, 33, 53] and
radio frequency identification [27, 40, 41, 47], to name a few. Despite the accuracy in specific trial sites, they
have a few practical limitations that hinder the wide deployment. For example, radio frequency signals, such
as Wi-Fi and Bluetooth, are subject to signal fluctuations due to multi-path fading or temporal obstructions,
which adversely deteriorate the localization performance. Image-based indoor localization, however, is prone to
noises due to the motion blur or a loss of focus. VLC-based indoor localization has emerged recently with indoor
luminaries, which are often well-structured and reliable indoors. Nevertheless, they usually require modulated
light sources, dense deployment of extra devices or holding them at a specific attitude.
Of all these techniques, geomagnetism has attracted much attention lately, mainly because it is pervasive,

relatively stable and deployable without infrastructure support [15]. Therefore, researchers begin to study indoor
localization with geomagnetism. Existing approaches are broadly divided into two categories: discrete magnetic
fingerprint-based localization and magnetic sequence-based localization. The first category leverages a discrete
magnetic fingerprint to pinpoint the user location. For example, Chung et al. [9] find the target fingerprint in the
database with the least squared error. However, in large trial sites, discrete geomagnetic fingerprint could be
ambiguous due to symmetric building structures or electrical wires, leading to large localization errors.

To address this, researchers study indoor localization with geomagnetic sequences. Compared with a discrete
fingerprint, a magnetic sequence consists of more fingerprints continuously collected in a time window and
enhances the location discernibility with temporal correlations [17, 44]. Additionally, due to the impact of
nearby ferromagnetic disturbances, the specific magnetic patterns become landmarks, which can be used to
discriminate locations. For example, Magil [43] localizes a user with pure geomagnetic sequences. MaLoc [46]
collects geomagnetic fingerprints with a smartphone and estimates current location with the proposed augmented
particle filter. To reduce the computational complexity, Mapel [42] fuses geomagnetism with pedometer based
on graphical model. GROUPING [52] also collects magnetic fingerprints and compares them with a geo-tagged
fingerprint database for localization. Instead of Euclidean distance, it leverages the inverse of cosine similarity to
measure the differences between two magnetic sequences. LocateMe [37] compares a magnetic sequence with
geo-tagged ones based on dynamic time warping (DTW).

Furthermore, Magicol [34] and MagFi [44] fuse opportunistic Wi-Fi fingerprints to reduce localization errors.
SemanticSLAM [1] models indoor landmarks with specific magnetic patterns and uses them to calibrate current
location estimations. Kwak et al. [23] localize with geomagnetic fingerprints. To save energy, they fuse magnetism
with Bluetooth for location estimation. CrowdX [7] builds floorplans with magnetic readings, Bluetooth readings
and opportunistic encounters of mobile users. Travi-Navi [54] proposes a self-deployable navigation scheme
termed leader-follower, where a leader surveys a path on-demand and then a follower follows the path to the
destination. Despite their improvements, DTW and other traditional shape matching based algorithms have
several limitations. First, it is time-consuming to match two sequences directly. As the length increases, the
computational cost grows [4, 35]. Second, DTW compresses or stretches magnetic sequences in the time axis for
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Fig. 2. Overview of MAIL.

better alignment. Particularly, it considers more about the overall shape of two magnetic sequences. Consequently,
it may discard small local anomalies, which could lead to alignment errors between magnetic sequences. Our
MAIL is orthogonal to the average smoothing or filtering, as it focuses on extracting temporal features from
the input sequence. However, we can also employ the smoothing technique in Magicol [34] to reduce statistical
noises in geomagnetic sequences to enhance the localization accuracy.

Inspired by the recent success of deep learning techniques, researchers begin to use recurrent neural networks
to process sequential inputs for localization. The work in [20] is related to ours, where authors propose to use a
basic recurrent neural network (RNN) [13] to localize a user with geomagnetic sequences. Our proposed model
is significantly different from it in several aspects. First, instead of extracting a single holistic feature from the
input sequence, we divide it into different scales (in terms of subsequence length). Then we propose a scale-based
feature extraction unit to extract features from each scale to detect variational anomalies and subsequently
enhance the location discernibility. Second, in order to determine the contribution of each scale to the localization,
we propose an adaptive approach to determine the attention value for each scale. Guided by these attention
values, we fuse multi-scale features together for location estimation.

3 SYSTEM WORKFLOW
In this section, we overview the workflow of MAIL in Figure 2, which consists of two main phases: an offline phase
and an online phase. In the offline stage, a surveyor designs survey paths and collects geomagnetic sequences
along them while holding the smartphone in the upright position. During the site survey, the surveyor walks in
constant speed and marks landmarks (e.g., corners, turnings, doors) along the path. Based on these landmarks,
the surveyor labels the ending position of each magnetic subsequence by interpolation. Afterwards, we calculate
the gradient of magnetic readings and construct a database. Then, we train a multi-scale localization network
using our training data.

In the online stage, a user takes out a smartphone and collects data with it. During the localization stage, the
user should hold the phone in the upright position as well. However, we can also calibrate the sensor readings
and map them to the upright position based on the attitude of the device (inferred from smartphone sensors). As
the user walks, the client application collects geomagnetic readings automatically and sends them to a remote
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Table 1. Major symbols used in MAIL.

Notations Definitions

N Number of samples in a geomagnetic sequence
M Number of scales
K Number of trial cases
c Length of a magnetic subsequence
P Number of subsequences with length c
gp Feature vector of a subsequence p
Φm Feature vector corresponding to the scalem
Ψm Normalized feature vector corresponding to Φm

f Multi-scale feature vector corresponding to a magnetic sequence
Γ N × 3 geomagnetic sequence

xk Ground truth 2-D coordinate corresponding to trial case k
x̂k Estimated 2-D coordinate corresponding to trial case k

server for localization. After calculating the gradient sequence, MAIL then divides it into subsequences and
extracts scale-based features (Section 4.2). Meanwhile, MAIL estimates the attention value corresponding to each
scale based on the gradient sequence (Section 4.3). Based on multi-scale features and corresponding attention
values, MAIL fuses these features together by paying more attention to prominent ones and estimates current
location (Section 4.4). Finally, MAIL sends the estimated position back to the client.
Table 1 presents major symbols used in this paper.

4 MULTI-SCALE LOCALIZATION MODEL
We elaborate the core design of the localization model in this section. First, we overview the structure of our
network in Section 4.1. Afterwards, we present the scale-based feature extraction unit in Section 4.2. Then,
we elaborate the adaptive attention generation in Section 4.3, followed by attention-guided feature fusion and
localization in Section 4.4. Finally, we discuss its theoretical foundations in Section 4.5.

4.1 Overview
In this section, we introduce the multi-scale attention-guided indoor localization network. The overall structure
is presented in Figure 3. Instead of using raw geomagnetic sequences to localize, we use the gradient sequence
to reduce the impact of device heterogeneity. Afterwards, we segment the gradient sequence into different
subsequences with preset scales. Then, we employ the scale-based feature extraction unit to extract sequential
features for different scales. To identify prominent ones, we generate an attention value for each scale, indicating
its importance in each trial. Finally, we fuse scale-based features together with attention guidance and regress
current location accordingly.
More specifically, our model consists of four major components:
1) Data pre-processing. In this part, we first calculate the gradient of magnetic sequence Γ (length is N ) to

reduce the impact of device heterogeneity (Figure 4), from which we get a gradient sequence, denoted by Γ′. Then
we segment it with specific scales. For scales from 1 toM , we obtain the subsequence sets {s1, · · · , sm , · · · , sM },
where sm (1 ≤ m ≤ M) is a set of subsequences corresponding to scalem.

2) Scale-based feature extraction. In this module, we design a scale-based feature extraction unit, termed SFE
unit, where we take segmented subsequences as input and extract features for each of them. For example, for
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Fig. 3. Overall multi-scale localization model.
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(a) Diverse magnetic readings from different devices.
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Fig. 4. Magnetic measurements with different devices: (a) initial readings, and (b) readings after calibration.

scalem(1 ≤ m ≤ M), we extract a feature vector for each subsequence in the set sm . Then, we concatenate feature
vectors corresponding to all subsequences and get a normalized sequential feature Ψm for scalem. We detail the
design of SFE unit in Section 4.2.
3) Adaptive attention generation. Based on our SFE unit, we are able to extract multi-scale features from the

gradient sequence Γ′. Due to diversified configurations indoors, various disturbances contribute differently in
each localization trial. This indicates that we should pay more attention to important scales. Nevertheless, it is
tedious to set a fixed attention value for each scale in every trial. Consequently, we design an adaptive attention
generation unit to identify the prominence of each scale in Section 4.3.
4) Attention-guided feature fusion and localization. Based on the attention value for each scale, we design an

attention-guided multi-scale feature fusion scheme to generate the location feature. Furthermore, we design a
location estimation module that consists of several linear and non-linear mapping functions. Based on the fused
feature, we estimate the ending location corresponding to the input magnetic sequence by regression. Finally, we
present our loss function in Section 4.4.
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(a) Iron door. (b) Fire hose. (c) Pillar.

(d) Laptop.
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Fig. 5. Illustrations of anomalies around geomagnetic disturbances.

4.2 Scale-Based Feature Extraction
In this section, we design the scale-based feature extraction unit. We first discuss our motivations in Section 4.2.1.
Then, we detail its design in Section 4.2.2.

4.2.1 Motivations for multi-scale mechanism. Many temporal sequences, due to their anomalies, provide useful
clues for spatial location inferring. However, local disturbances usually vary from each other in terms of coverage,
rendering it difficult to extract distinguishing location features with a global feature extractor for the whole input
sequence.

To illustrate this, we collect geomagnetic sequences while passing by various magnetic disturbances. As shown
in Figure 5, an iron door results in smaller region of impact (around 50 samples), whereas the anomaly spans a
larger range (more than 100 samples) near a fire hose. This is because the fire hose has a large iron ax and a pipe
inside. Furthermore, the anomaly near the pillar is larger than the door and the fire hose with steel-reinforced
concrete.
Furthermore, we have collected geomagnetic sequences along typical electrical appliances. For example, the

magnetic anomaly around a laptop is relatively small (around 100 samples). Similar to the laptop, the anomaly
around a TV is similar (around 100 samples). This is because their power is similar (around 60 watt). Different from
them, the refrigerator results in larger region of impact (around 200 samples), as its power level is larger (around
380 watt). These examples show that anomalies in collected geomagnetic sequences vary with the ferromagnetic
disturbance. Consequently, a feature extractor that extracts features at a single fixed scale may overlook small
anomalies amid a long geomagnetic sequence or ignore other parts of large anomalies. This may lead to degraded
discernibility of location features, hence large localization errors.

In addition, due to varied walking speeds, the numbers of samples collected in a given region differ from each
user as well. We show the collected signals along a trial path with a device in Figure 6. For instance, the number
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of geomagnetic samples collected by a user walking fast maybe small, leading to a squeezed anomaly. In contrast,
if a user walks slowly, this user may collect a large number of samples, leading to a stretched anomaly. Therefore,
it is challenging to extract a distinguishing location feature from a magnetic sequence.
Based on our observations, we therefore propose a novel multi-scale approach to extract features from input

geomagnetic sequences. Instead of extracting features from the whole sequence with a single feature extractor,
we segment this sequence into smaller subsequences. Then, we extract sequential features from each of these
subsequences, respectively. Together with these features, we generate a set of features corresponding to each
scale. By fusing sets of features (different scales) together, we generate more comprehensive and distinguishing
features for location estimation.

4.2.2 Scale-Based Feature Extraction Unit. In this section, we detail our feature extraction unit for each scale,
termed SFE unit in Figure 7.

Based on our observations, many anomalies vary in scale with environmental factors. For a specific scale, the
SFE unit first segments the gradient sequence. Then, it extracts features for each subsequence. Formally, given a
gradient sequence Γ′ of length N ′, we segment it into subsequences with size c to extract sequential feature at
scalem. The number of subsequences P is:

P = ⌈
N ′

c
⌉ . (1)

In the case that N ′ is not an integral multiple of c , we have overlaps between adjacent subsequences for
segmentation.
After the segmentation of gradient sequence Γ′, we exploit the GRU [8] to extract features from each subse-

quence at the current scale. GRU enhances RNN with gated mechanism, which reduces vanishing gradients in
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the training stage. Furthermore, it is more computationally efficient compared with long short-term memory
(LSTM) [12, 18], which facilitates its training and prediction on mobile platforms. The GRU is defined as follows:

rt = σ (Wirxt + bir +Whrht−1 + bhr ), (2)
zt = σ (Wizxt + biz +Whzht−1 + bhz ), (3)

h̄t = tan(Winxt + bin + rt (Whnht−1 + bhn)), (4)

ht = (1 − zt )h̄t + ztht−1, (5)

where xt and ht denote the input and the hidden state at time t , respectively. The hidden state at time 0 is h0 = 0.
σ (·) is the logistic sigmoid function. We use r, z and h̄ to denote update gate, reset gate and candidate activation,
respectively. These gates allow the cell in GRU to keep, update or forget information over time. We use Wi∗ and
Wh∗ to indicate weight values for current input and previous hidden state, respectively. Additionally, we use b to
denote bias terms.

After feature extraction with GRU, we get a feature vector corresponding to each subsequence, denoted by gp ,
where 1 ≤ p ≤ P . Then, we concatenate them together to generate the feature Φm of the corresponding scalem
(1 ≤ m ≤ M):

Φm = [g1; g2; · · · ; gp ; · · · ; gP ], (6)
where [·; ·] indicates feature concatenation.

Then, we map the extracted feature Φm to a fixed-size vector by a non-linear unit, which mainly consists of
several fully connected (FC) layers and a parametric rectified linear unit (PReLU) [14] function:

Ψm = vT ∗ PReLU(UT Φm + d), (7)

where v, U and d are learnable parameters.
Finally, we append a normalization layer to the SFE unit to speed up the model training. Instead of traditional

batch normalization, we leverage state-of-the-art layer normalization [3]. This is because the normalization layer
is more computationally efficient and improves the performance of recurrent neural networks with its bounding
paradigm.

4.3 Adaptive Attention Generation
We extract features with multiple scales so that we are able to capture various geomagnetic anomalies. Due to a
large variety of indoor configurations, the ranges of anomalies vary from one trial site to another. Consequently,
different scales play various roles in location estimation. For example, in a compact lab area, the ferromagnetic
disturbances may be small, e.g., iron doors, leading to small-scale anomalies. While in a large complex, such as
a food court, they have more reinforced steel structures, which usually incur large-scale anomalies. The large
diversity between multi-scale features leads to significant challenges in balancing scale-based features manually.

To address this, we propose an adaptive attention generation scheme for each scale. By generating an attention
value for each scale, we are able to achieve generality and accuracy. Our intuition is that in a short geomagnetic
sequence (spans around 10 meters), features extracted from a few scales are crucial, while others are not.
Consequently, we generate larger attention values for important scales and smaller ones for others.

In order to generate attention values, we design an adaptive attention generation unit, which consists of several
linear layers, no-linear mapping functions and finally a softmax layer for attention normalization (Figure 3). The
normalized attention values for all scales are between 0 and 1 and they add up to 1. We detail the attention gener-
ation module as follows. Given the gradient sequence Γ′, we calculate the attention vector w̄ = [w̄1, w̄2, · · · , w̄M ]

corresponding to all scales as follows:

w̄ = eT ∗ PReLU(qT Γ′ + r), (8)
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where e, q and r are learnable parameters, PReLU is an activation function used to increase nonlinearity and w̄m
indicates the attention value for scalem (1 ≤ m ≤ M). Then, we normalize scale-dependent attention values as
follows:

wm =
exp(w̄m)∑M

m=1 exp(w̄m)
. (9)

After normalization, the sum of all attention values adds up to 1:
M∑

m=1
wm = 1. (10)

4.4 Attention-Guided Multi-Scale Feature Fusion and Localization
Based on above, we fuse scale-based features extracted byM SFE Units based on attention values. Formally, the
feature set extracted forM scales is defined as follows:

Λ = {Ψ1, . . . ,ΨM−1,ΨM }. (11)

Then, the vector of attention values for allM scales is defined as follows:

w = [w1, . . . ,wM−1,wM ]. (12)

Based on features extracted from various scales and their corresponding attention values, we fuse multi-scale
features as follows:

f = [w1Ψ1; . . . ;wM−1ΨM−1;wMΨM ], (13)
where [·; ·] is the concatenation operation and f indicates the multi-scale feature vector.

Through the guidance of attention values during the fusion process, we highlight important scales with large
attention values while reducing those with small values, thus achieving effectiveness. Rather than setting fixed
attention values, our approach is data-driven and does not require manual calibration, thus is more adaptable to
different trial sites.

Based on the fused feature, we estimate the location where the last geomagnetic sample is collected. Formally,
we estimate current location x̂k based on the fused feature fk corresponding to trial case k as follows:

x̂k =Wfk + b, (14)

where W and b are learnable parameters for location estimation. In our experiment, x̂ is rounded (e.g., to three
decimals) according to the requirement of the application.
In the training stage, we use the mean squared error as the loss function, which is defined as follows:

L =
1
K

K∑
k=1

(xk − x̂k )2 , (15)

where K is the number of trial cases. We use xk and x̂k to denote the ground truth and estimated location
corresponding to trial case k , respectively.

4.5 Discussions on the Theoretical Foundations of MAIL
In this section, we discuss the theoretical foundations of MAIL. Specifically, we elaborate the underpinning
theories of recurrent neural networks and detail the intuition and foundations of attention mechanism in our
settings.

As discrete geomagnetic fingerprints indoors are relatively stable, we use RNNs to extract sequential features.
Basic RNNs organize neuron-like nodes into successive layers, where each node is connected in a directed manner
to other nodes in the successive layer. Each node has time-varying activation function and each connection has
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a learnable weight value. Nevertheless, earlier RNNs are able to capture and reserve information from recent
context. In the cases where more context is needed (long-term information), they do not perform well. In light of
this, the long short-term memory (LSTM) integrates cell states so that it is able to learn long-term information
from a longer sequence [18]. Gated recurrent units (GRUs) [8] integrate the gating mechanism. With fewer
parameters than LSTM, GRUs are able to achieve both accuracy and efficiency with small datasets or sequences
like geomagnetic. Therefore, by using more recent recurrent networks, our model is able to learn the sequential
information for localization.
Generally, an RNN network processes the sequence-to-sequence problem, where the sequence is treated

uniformly. This, however, does not generalize well to complicated indoor sites with various scales of anomalies
(Figure 5). Unlike sentences, geomagnetic sequences consist of numerical values with far fewer contextual
information, leading to degraded distinctiveness of the sequential feature. Therefore, we propose a scale-based
approach, where we segment the input sequence into subsequences of different scales. Consequently, we are
able to extract sequential features corresponding to anomalies at different scales, generating more diverse
representations.

According to psychological studies, humans tend to pay more attention to the part of information that is more
important [2]. Motivated by this, attention mechanism is proposed to selectively focus on more relevant content.
For example, a part of a sentence or a portion of an image is selectively weighted to distinguish it from others.
Fusing these weighted components together, the algorithm is able to identify prominent parts and pays more
attention to them to generate distinguishing features [48]. By focusing more on important scales, our network
generates distinguishing features adaptively for location inferring, thus enhancing the localization accuracy.

5 ILLUSTRATIVE EXPERIMENTAL RESULTS
To evaluate the performance of MAIL, we have conducted extensive experiments in three different trial sites,
including a narrow lab area, a spacious food court and an underground parking lot. Figure 8 illustrates floorplans
of these trial sites. Covering around 2, 800 m2, the lab area has long corridors and many room partitions. In
contrast to the lab area, the food court covers more areas with open space (around 3, 500 m2). The underground
parking lot covers around 6, 100m2 with large open areas. We first discuss the implementation details in Section 5.1.
Then we present experimental setup and performance metrics in Section 5.2. We illustrate localization results in
Section 5.3, followed by the discussion of system overhead in Section 5.4.

5.1 Implementation of MAIL
We have implemented the proposed MAIL localization system, which consists of two parts: a mobile client
application and a backend server program. The client application can be installed on Android devices with a
magnetometer. As for the localization program, we implement it on a Ubuntu 16.04 server, which has two Intel
E5-2640 central processing units (CPUs), eight 32 GB random access memory cards and four Nvidia 2080 Ti
graphical processing units (GPUs).
Client program. The client program is implemented in the Android platform.We use it to collect magnetometer

readings. During the data collection, it also records the timestamp when a magnetic reading is collected. The
sampling frequency is 50 Hz in both offline and online stages. We have a buffer mechanism. Instead of sending
each magnetic reading to the server separately, we collect around 50 samples and send them to a server via Wi-Fi
networks.
Server program. The localization program is implemented in a server, which receives magnetic readings

from the client. After receiving a sufficient amount of readings, it concatenates them together based on the
timestamp and forms a magnetic sequence. Then it extracts scale-based location features and fuses them together
for accurate localization.
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Fig. 8. Floorplans of our trial sites: a) Lab area; b) Food court; c) Parking lot.

5.2 Experimental Settings and Performance Metrics
We have implemented the client program on Android phones. In order to train a multi-scale model for localization,
we have designed dense survey paths to cover popular areas in our trial sites. In the offline stage, we ask a
volunteer to hold a trial device and walk along all survey paths in constant speed. During the walking, the
smartphone faces upward and points to the walking direction. A client program collects magnetic readings
automatically. While in the online localization stage, we invite a volunteer to take a smartphone and walk with it
in each trial site. Specifically, we invite a male volunteer (height 180cm, numbered #1) to take a Samsung S7 and
walk with it in the lab area and the food court. In the parking lot, we invite a female volunteer (height 160cm,
numbered #4) to take Xiaomi MI 6 to collect training and testing magnetic sequences. In these trial sites, we ask
the volunteer to walk along each survey path for several times. We evaluate the localization results with those
collected in the last round and train with remaining sequences. Figure 8 shows the floorplans and survey paths
in our trial sites. In our trials, the localization application records geomagnetic readings along the path and we
label starting and ending locations manually based on nearby landmarks, such as doors and corners. We label
locations between starting and ending positions by linear interpolation.
We have collected 1195, 976 and 752 training sequences in the lab area, the food court and the parking lot,

respectively. For localization, we have collected another 385, 241 and 376 magnetic sequences, respectively. We
train a network model for each trial site and conduct evaluations accordingly. In order to evaluate the prevalence
of local anomalies, we have conducted a statistical analysis. To this end, we design a shape comparison algorithm
using the DTW to detect anomalies at each scale and find their positions in each training or trial sequence. By
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Table 2. Proportions of local anomalies in our dataset.

Lab Area Food Court Parking Lot

Train 70.0% 71.0% 56.9%
Trial 71.2% 65.5% 61.2%

comparing their locations, we determine that local anomalies exist if two anomalies overlap. We present the
proportions of local anomalies in Table 2. It shows that more than 56% of samples in our dataset have local
anomalies in these trial sites. Furthermore, the portion of local anomalies in the parking lot is lower, mainly
because it is more spacious and has fewer geomagnetic disturbances.
We compare the performance of MAIL with the following state-of-the-art localization algorithms:
• Jang et al. [20], which train an RNN network to estimate the location of a target. In our experiment, we
build an RNN network with 4 layers as a comparison scheme.

• Magicol [34], which finds overlapping paths by comparing magnetic sequences with DTW. Then, it proposes
a bi-directional particle filter to reduce estimation errors of user motion during the localization.

• MaLoc [46], which localizes a target by comparing collected fingerprints with geo-tagged ones stored in a
database. Then, it constrains location estimations based on user motion and particle filters.

We measure the localization error of a target with the Euclidean distance. Given K trial sequences with ground
truth locations X = {x1, x2, · · · , xK } and estimated ones X̂ = {x̂1, x̂2, · · · , x̂K }, we denote the ground truth
location and estimated one of trial k as xk and x̂k , respectively. The mean localization error ε is defined as follows:

ε =
1
K

K∑
k=1

| |xk − x̂k | |2, (16)

where | | · | |2 denotes the L2 norm. We round location estimations to three decimal places in our experiment.
In order to evaluate the improvement with attention guidance, we design a baseline approach without adaptive

attention generation, termed MAIL w/o Attention, where the attention values of all scales are the same. We also
conduct additional experiment at different walking speeds in the lab area. Specifically, we ask volunteer #1 to walk
at slow (around 1.0m/s), normal (around 1.2m/s) and fast (around 1.4m/s) speeds and collect magnetic readings.
Then we use our trained MAIL to evaluate the positioning accuracy. In order to address the speed diversity,
we enhance our training with data augmentation. Specifically, we propose to interpolate and downsample our
training sequences to augment the training database. For example, by interpolation, we have longer magnetic
sequences in an area, indicating slower walking speed and longer dwelling time. In contrast, we generate shorter
magnetic sequences, indicating faster walking speed. According to the report in [28], the average walking speed of
a healthy human ranges from 1.0m/s (relatively slow) to 1.5m/s (relatively fast). Therefore, our data augmentation
is general to a wide range of users.

To evaluate the impact of devices and users on the accuracy of MAIL, we have invited more volunteers to take
part in the additional evaluation in the lab area and the food court. We invite two more male volunteers (heights
are 165cm and 170cm, numbered #2 and #3, respectively) to take part in the localization process in the lab area.
Similarly, these volunteers are asked to walk along designed paths several times and collect magnetic sequences
one after another. The trial devices taken by these users are Samsung C5 Pro, Huawei Mate 9 and Xiaomi MI 6. In
the food court, we invite volunteer #2 to collect magnetic sequences with Xiaomi MI 6. Each volunteer collects
the same amount of testing sequences as volunteer #1 does.
We develop an Android application and run it consecutively to evaluate its power consumption in different

devices. First, we kill all other applications and execute evaluations by collecting geomagnetic sequences at 50Hz.
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Table 3. Baseline parameters in our experiment.

Parameters Value

Epoch 1500
Initial Learning Rate 0.02
Batch Size 400
Number of Scales 6
Sequence Length 500
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Fig. 9. Mean localization Error versus length of geomagnetic
sequences (lab area).
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Fig. 10. Mean localization Error versus number of scales (lab
area).

As discussed, we design a buffer mechanism in our client, where we store collected geomagnetic readings in the
device until we get a sufficient amount of readings. Then, we pack them together and send them to a remote
server through the Wi-Fi network. During the trial, the application is kept in the foreground and the screen is
kept on. We measure the percentage of battery before and after the evaluation. Then, we kill all applications
for the same amount of time and measure the power drop with screen on. The total power consumption is the
difference between the power drop with application running and that without any foreground applications. By
dividing the total power consumption by the number of trials, we get the average power consumption of each
trial.

We present the baseline parameters in our trials in Table 3. The lengths from scale 1 to scale 6 are 50, 100, 150,
200, 250 and 500, respectively. To update the weights of our network, we use the Adam optimizer.

5.3 Localization Results
We show themean localization error with different sequence lengths in Figure 9. It shows that themean localization
error decreases with longer magnetic sequences. This is because we have more diverse geomagnetic anomalies in
a longer magnetic sequence, which enhances the location discernibility. However, the decrease in the localization
error slows down as the sequence length becomes longer than 500. This is because it provides sufficient location
clues for localization. As the sequence length grows longer, it takes more time to collect magnetic samples during
the bootstrap stage. Furthermore, it also incurs more network overhead in the course of data transmission. To
achieve trade-off between the localization accuracy with time and network overhead, the sequence length is 500
in our trials.
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Fig. 11. CDF of localization error (lab area).
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Fig. 12. CDF of localization error (food court).

We present the impact of the scale number on the localization accuracy in Figure 10. It shows that the overall
localization error is smaller with more scales. This is because we are able to detect diverse anomalies with more
scales. By detecting multiple scales, we are able to generate more distinguishing location features, thus increasing
the localization accuracy. Nevertheless, as the number of scales increases, the decrease in localization error slows
down. This is because we have extracted sufficient information from the training data. Furthermore, over-fitting
may occur. Therefore, the localization error increases slightly. In addition, the number of parameters in our model
increases with more scales, leading to slower convergence. Consequently, we set the number of scales to 6 to
achieve sufficient localization accuracy.
We illustrate the cumulative density function (CDF) of the localization error in the lab area in Figure 11.

Compared with the state-of-the-art competing schemes, our approach is able to achieve sufficient accuracy.
This is mainly due to three reasons. First, we introduce the multi-scale feature extraction. By detecting multi-
scale anomalies, we are able to enhance the distinctiveness of location features. Second, instead of setting fixed
weights for each scale, we leverage an adaptive attention generation strategy, which identifies prominent scales
for each magnetic sequence. Third, guided by attention values, we fuse multi-scale features attentively and
generate distinguishing location features. Combined with the powerful capacity of deep learning techniques,
MAIL improves localization accuracy by a large margin (around 36%).
We present the CDF of localization error in the food court and the parking lot in Figure 12 and Figure 13,

respectively. They show that the proposed MAIL achieves sufficient accuracy compared with competing schemes
in more spacious trial sites. This is mainly because we extract features with a scale-based unit. Therefore, we are
able to extract fine-grained features. Furthermore, we determine the attention value for each scale adaptively.
Guided by them, we fuse multi-scale features by focusing on scales that are more important. Based on the fused
feature, we are able to achieve sufficient localization accuracy.
We present the loss value in training stages in Figure 14. It shows that the loss decreases with more epochs.

This is because MAIL is capable of fitting the training data with the forward and backward propagation. As the
number of epochs grows, the decrease in loss value slows down. This is because our model has fitted the training
data. The overall loss in the parking lot is larger than those in the lab area and the food plaza, mainly because the
parking lot is more spacious and contains fewer anomalies. This could lead to lower location discernibility and
thus larger loss values.
We compare the mean localization error with (w/) and without (w/o) attention guidance in the lab area and

the food court in Figure 15. It shows that by incorporating attention guidance, MAIL increases the localization
accuracy. This is mainly because MAIL is able to identify prominent scales. By paying more attention to them,

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 54. Publication date: June 2020.



MAIL: Multi-Scale Attention-Guided Indoor Localization Using Geomagnetic Sequences • 54:17

0 2 4 6 8 10 12

Localization Error (m)

0

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

MAIL

Jang et al.

Magicol

MaLoc

Fig. 13. CDF of localization error (parking lot).

0 500 1000 1500

Epoch

0

5

10

15

20

25

30

35

L
o

s
s

Parking Lot

Lab Area

Food Court

Fig. 14. Loss with epochs.

Lab Area Food Court

Trial Sites

0

0.5

1

1.5

2

M
e
a
n
 L

o
c
a
liz

a
ti
o
n
 E

rr
o
r 

(m
) w/ attention

w/o attention

Fig. 15. Mean localization error w/ and w/o attention.

Slow Normal Fast

Speed

0

5

10

15

L
o

c
a

liz
a

ti
o

n
 E

rr
o

r 
(m

)

Fig. 16. CDF of localization error at different walking speeds
(lab area).

MAIL fuses multi-scale features more effectively and generates distinguishing location features. Therefore, it
achieves sufficient improvement in localization accuracy compared with that without attention guidance.
We present the mean localization error at different walking speeds in Figure 16. It shows that our approach

achieves comparable localization accuracy at differentwalking speeds. Due to the data augmentation in the training
process, our MAIL learns sufficient information about anomalies at different walking speeds. Consequently, it is
able to detect anomalies at different walking speeds and give comparable positioning accuracy.

To illustrate, we present the distribution of mean attention values in the lab area and the food court in Figure 17.
It shows that the distribution of attention values varies with the trial site. In the lab area, the mean attention
values of small scales (scale 1 and 2) are larger. This indicates that MAIL pays more attention to smaller scales in
the lab area. While in the food court, the mean attention values of scale 3, scale 4 and scale 6 are larger than those
in the lab area. This is mainly because it is more spacious, thus farther away from ferromagnetic sources, leading
to larger and smoother anomalies. This shows that larger scales play a more important role in the food court.
Furthermore, we show detailed distributions of attention values in Figure 18(a) and Figure 18(b), respectively.
Experimental results demonstrate that MAIL is capable of generating attention values adaptively for these trial
sites.

In order to evaluate the generality of the proposed system to different devices, we conduct another experiment
with several smartphones in the lab area. Figure 19 shows the localization error with different devices is comparable.
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Table 4. Average time consumption of a localization trial.

Method Magicol [34] MaLoc [46] Jang et al. [20] MAIL

Time (s) 1.79 0.24 0.06 0.1

This is mainly because we train our network with gradient rather than raw magnetic readings for localization.
By using magnetic gradient, we are able to reduce the impact of device heterogeneity. Thus, our system achieves
generality between devices.

Figure 20 shows the localization error with different users in the lab area. It shows that our MAIL achieves com-
parable localization error with different users (height from 165cm to 180cm) and walk patterns. This demonstrates
the applicability of the proposed network model to different users.

5.4 System Overhead
In this section, we present the time and energy consumption of MAIL. We train our neural network in a server
with an Nvidia 2080ti GPU. The average time consumption of training a model is around 10 minutes. In the
localization stage, the sampling rate of geomagnetism is around 50Hz.
Time Consumption. The total time consumption of collecting and sending 1073 packages is around 1113

seconds. Dividing this by the number of packages, the average time consumption for sending each package to a
server is around 1 second. This is mainly due to the limited sampling rate of magnetometer (50 Hz). In the sever,
we estimate the user location with a pre-trained model. We evaluate with 792 magnetic sequences consecutively,
which takes around 79 seconds. Therefore, the average time consumption of running a location query with 500
geomagnetic samples is around 0.1 second. Table 4 presents the average time consumption of a trial case in
our experiment. It shows that the proposed MAIL reduces time consumption by more than 56% compared with
Magicol [34] and MaLoc [46]. This is because MAIL extracts sequential features by a pre-trained model, which is
more computationally efficient. As MAIL extracts multi-scale features from the input geomagnetic sequence,
its time consumption is slightly larger (0.04s) than Jang et al. [20]. However, by extracting multi-scale features,
MAIL improves the localization accuracy by a large margin.
Real-Time Localization. It takes around 0.1 second to estimate the location given a magnetic sequence of

length 500. Therefore, our model is capable of giving around 10 location estimations per second. However, our
system cannot give so many location estimations per second due to the limited sampling frequency (50Hz) of
the magnetometer. Despite the limitation of the magnetic sensor, it is possible to facilitate localization by data
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Fig. 18. Detailed distribution of attention values at each scale in our trial sites.
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Fig. 19. Localization error with different devices (lab area).
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Fig. 20. Localization error with different volunteers (lab
area).

Table 5. Total and average energy consumption of different trial devices.

Device Packages Total (mAh) Average (mAh)

Samsung S7 2658 45 0.0169
Samsung C5 Pro 2469 27 0.011
Xiaomi MI 1915 66 0.034

streaming, where we establish a persistent connection between a client and a server. The client uploads instant
magnetic readings continuously. Upon receiving a or several magnetic samples, the server appends new samples
to the end of a received magnetic sequence and infers current location using the latest 500 readings. By data
streaming, MAIL can give several location estimations in one second, thus achieving real-time localization (more
than once per second), which is sufficient for pedestrian or robot localization indoors.
Energy Consumption. We present the average energy consumption of collecting and sending a package in

Table 5. Evaluation results show that the power consumption of our client is marginal compared with the power
capacity of state-of-the-art mobile phones (thousands of mAh).

6 DISCUSSIONS
In this paper, we propose a multi-scale approach to detect various anomalies. Although we have managed to
extract fine-grained location features and achieve accuracy in different trial sites, a few more practical challenges
(not the focus of the paper) remain to be addressed.

• Generality to other signals. Besides geomagnetism, other signals, such as visible light, Bluetooth and Wi-Fi,
present similar signal variations as well, mainly due to the multi-path propagation and various power
levels. For example, a wireless access point with higher power levels may cover a larger area while a lower
one covers a smaller area. Therefore, these access points provide wireless anomalies in various scales.
Consequently, it is possible to study variations of other signals and adapt our network to these signal
sequences as well.

• Crowdsourcing geomagnetism for localization. Despite its accuracy, MAIL relies on a given geomagnetic
map for accurate indoor localization. However, it is usually time-consuming and labor-intensive to collect
geomagnetic readings in a large site, e.g., a multi-story grand shopping mall. Additionally, the cost of
conducting a site survey by professional surveyors increases dramatically at the metropolitan scale. To
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improve the deployability of localization systems, recent researches study crowdsourcing by volunteers
to construct the signal map, e.g., Wi-Fi fingerprint. It is also possible to study crowdsourcing techniques
which combine different information, such as distinguishing signal patterns [10] or user trajectories [51] to
label collected geomagnetic signals.

• Deployment in mobile devices. MAIL is based on the client-server architecture, where a client program
collects magnetic readings and sends them to a remote server for localization. This incurs round-trip delay,
as well as privacy concerns from users. Motivated by the recent development of software and hardware, it
is possible to study efficient deployment in mobile devices without server support. For example, recent
deep learning frameworks have adapted to resource-constrained mobile platforms (e.g., TensorFlow Lite3).
Furthermore, state-of-the-art mobile phones are equipped with graphical processing units (e.g., Google
Pixel 34, Xiaomi Mi 85). Combined with the above, it is possible to fine-tune a model and deploy it in a
mobile device.

7 CONCLUSION
In this paper, we propose a multi-scale attention-guided indoor localization network, termed MAIL. Instead of
using raw input readings from magnetometers, we leverage the gradient of magnetic sequences to reduce the
impact of device heterogeneity. In order to detect local anomalies in various scales, we propose an SFE unit,
which detects scale-specific anomalies and extracts features accordingly. Then, we employ several SFE units to
extract various features at different scales. Due to environmental factors, different scales contribute differently to
the location estimation. To achieve high applicability, we propose an attention generation unit that learns the
prominence of each scale adaptively. By paying attention to more prominent scales, we fuse extracted multiple
scale-based features together to generate a more distinguishing location feature and estimate the user position.
We have conducted extensive experiments in three different trial sites. Experimental results show that MAIL
reduces the mean localization error by more than 36% compared with state-of-the-art competing schemes.
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