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Indoor navigation plays a crucial role in indoor location-based services. Single signal-based navigation systems, however,
are prone to sensor noises, signal ambiguities and are specific to trial sites. To address these, existing work fuses different
signals with user trajectories. Despite their accuracy, many of them are specific to input signals and navigation modes (e.g.,
spot-based or sequence-based) and are computationally expensive in large sites. Additionally, they do not give predictive
uncertainty estimations, leading to a lack of trust in navigation instructions.

In this paper, we propose a unified framework for accurate indoor navigation in various modes with different inputs,
termed DeepNavi. We exploit either convolutional or recurrent neural networks for initial feature extraction. Afterwards,
we insert fully connected layers to generalize extracted signal-dependent features to a shared domain before fusion. Then,
we leverage state-of-the-art ensemble learning to learn multiple predictive models. By combining them together, we further
reduce the impact of signal noises and achieve high accuracy. Finally, we insert mixture density networks to model more
generalized data distributions and provide uncertainty estimations. We have implemented DeepNavi and conducted extensive
experiments in two different trial sites with different signal combinations. Experimental results show that DeepNavi reduces
location errors by more than 20% with comparable orientation accuracy.

CCS Concepts: • Networks → Location based services; • Human-centered computing → Ubiquitous and mobile
computing systems and tools.

Additional Key Words and Phrases: Indoor navigation, signal fusion, deep learning, ensemble learning

∗Corresponding author.

Authors’ addresses: Qun Niu, niuqun@mail2.sysu.edu.cn, Sun Yat-sen University and Guangdong Key Laboratory of Information Security
Technology; Ning Liu, liuning2@mail.sysu.edu.cn, Sun Yat-sen University and Guangdong Key Laboratory of Information Security Technology;
Jianjun Huang, Sun Yat-sen University, huangjj29@mail2.sysu.edu.cn; Yangze Luo, Sun Yat-sen University, luoyz5@mail2.sysu.edu.cn; Suining
He, The Hong Kong University of Science and Technology, sheaa@cse.ust.hk; Tao He, Sun Yat-sen University and Guangdong Key Laboratory
of Information Security Technology, hetao23@mail2.sysu.edu.cn; S.-H. Gary Chan, The Hong Kong University of Science and Technology,
gchan@cs.ust.hk; Xiaonan Luo, Guilin University of Electronic Technology, luoxn@guet.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2019 Association for Computing Machinery.
2474-9567/2019/9-ART99 $15.00
https://doi.org/10.1145/3351257

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 3, Article 99. Publication date: September 2019.

https://doi.org/10.1145/3351257


99:2 • Niu et al.

ACM Reference Format:
Qun Niu, Ning Liu, Jianjun Huang, Yangze Luo, Suining He, Tao He, S.-H. Gary Chan, and Xiaonan Luo. 2019. DeepNavi: A
Deep Signal-Fusion Framework for Accurate and Applicable Indoor Navigation. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol. 3, 3, Article 99 (September 2019), 24 pages. https://doi.org/10.1145/3351257

1 INTRODUCTION
Indoor navigation, as an important part in indoor location-based services, has received much attention in a wide
range of applications, such as guiding customers to a restaurant or a conference room [38], helping visually-
impaired users to work independently [22, 36] and indoor augmented reality-based gaming [9], etc. To provide
high-quality indoor location-based services, one has to achieve sufficient positioning accuracy. Existing approaches
extract location cues from various signals for navigation. Therefore, extracting stable and distinguishing location
features is crucial for accurate indoor navigation (in terms of location and orientation errors).

Based on navigation modes, recent approaches are broadly divided into two categories: spot-based and sequence-
based [27, 28]. Spot-based navigation approaches are those that estimate current location and orientation with
instant inputs, which are collected at a given timestamp (e.g., an image [7] or a radio fingerprint [10]) at this spot.
In contrast to spot-based approaches, sequence-based ones leverage sequential inputs, which are collected in
a time window when the user is walking, such as videos [6] and intensity sequences [32], to extract temporal
correlations and infer current location and orientation correspondingly.

In complicated indoor sites, prior navigation approaches are prone to large errors due to environment and user
factors. For example, image/video-based indoor navigation achieves sufficient accuracy in sites with rich visual
textures, such as shopping malls and food plazas [30, 34]. While in other sites with sparse or repetitive visual
textures, such as hospitals and offices, it does not work well. Geomagnetism 1 presents distinguishing patterns
in corridors due to ferromagnetic disturbances, such as steel-based buildings structures, electrical wires and
appliances [16]. Nevertheless, it sometimes suffers from feature ambiguities due to similar building structures,
leading to large errors.

Based on above observations, we study feature-level fusion scheme for accurate indoor navigation with wide
applicability in different sites, e.g., an office area with repetitive visual features, a food plaza with geomagnetic
ambiguities, as well as navigation modes, such as spot-based and sequence-based approaches. This is because
features extracted from different inputs possess complementary location cues. By fusing them together, we
generate more distinguishing location features across different sites, thus achieving high accuracy and wide
applicability. However, there are several major challenges in realizing fusion-based indoor navigation systems:

• Mode-dependent feature extraction: In spot-based navigation, recent approaches focus on extracting features
using convolutional neural networks (CNN) [23, 24, 43] with instant inputs, e.g., images. While in sequence-
based navigation, others conduct feature extraction using recurrent neural networks (RNN) with temporal
sequences [21], e.g., geomagnetic sequences. These networks are specially tailored to inputs and navigation
modes, leading to a lack of generality.

• Large diversities in features: As input signals are fundamentally different from each other (in terms of
sampling frequency, dimension), extracted features reside in their respective feature spaces with different
dimensions. Take Wi-Fi and geomagnetism for example, their sampling frequencies vary from each other
significantly (1Hz v.s. 50Hz). Therefore, it is challenging to fuse these diverse features directly by feature
concatenation.

• Significant navigation errors with noisy inputs: Due to the impact of environmental noises, input signals
collected by users may be noisy temporally. For example, images taken by users could be blurry due to shaky
hands or a loss of focus [25]. Magnetic readings are prone to statistical noises indoors. Wi-Fi fingerprints

1We use “magnetism” and “geomagnetism”, “magnetic” and “geomagnetic” interchangeably in this paper.
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are fluctuating with multi-path fading and temporal blocking of nearby pedestrians [35, 44]. These noises
could result in large errors.

• A lack of uncertainty estimation: In many learning-based navigation tasks, they formulate an optimization
problem which minimizes the cost of predictions (location and orientation in our case) with the mean
squared error. However, many do not capture the predictive uncertainty of estimations. Recent work
estimates uncertainty values with a single Gaussian distribution. This is restrictive of data distributions,
which may lead to unreliable uncertainty predictions [26].

Inspired by the recent advancement of neural networks, we propose DeepNavi, a unified deep network-based
indoor navigation framework. DeepNavi has wide applicability in various sites (it fuses complementary features
to enhance feature distinctiveness) and different navigation modes (it uses a sequential network architecture so
that it can process both instant inputs and sequential inputs). After extracting initial features from each input,
DeepNavi fuses these features together. Based on the fused feature, DeepNavi estimates current location and
orientation and guides users to their destinations. In summary, DeepNavi has the following novelties:

• Unified feature extraction with wide applicability: Spot-based navigation is a special instance of sequence-
based navigation (length is 1). Consequently, we propose a unified sequential feature extraction framework
based on recurrent networks, which extracts features from either instant or sequential inputs. Specifically,
we extract visual features corresponding to each frame with convolutional networks, which is better with
images and use recurrent networks to process other sequential inputs.

• Feature mapping to common space through non-linear mapping: In order to bridge the gap between prelimi-
nary input-dependent features, we further incorporate non-linear fully connected (FC) layers to generalize
them. Through non-linear generalization, these features are mapped to common feature space and become
less dependent on raw inputs, thus are more generalized for feature fusion.

• Accurate navigation with ensemble learning: We enhance the navigation accuracy with the ensemble learning.
More specifically, we train several models and give multiple independent estimations with given inputs.
Then, we combine them together to smooth out the impact of noises, thus reducing navigation errors by
more than 20% in our trial sites (in terms of location prediction).

• Use of mixture models for uncertainty estimation: Beyond predicting locations and orientations, we further
incorporate mixture density networks (MDN) [3] to provide predictive uncertainty estimations. By lever-
aging the MDN, we model our training data with more generalized mixture models, thus reducing the
restrictive assumption of a single Gaussian distribution and providing uncertainty estimations.

As an example, we study indoor navigation with two signal combinations: 1) images and magnetic sequences;
2) images and Wi-Fi fingerprints. To validate the performance, we have conducted extensive experiments in
two different trial sites: an office area with repetitive visual textures and a large food plaza with geomagnetic
ambiguities. Experimental results demonstrate that DeepNavi reduces location errors by more than 20% and
achieves comparable orientation accuracy in our trial sites. Please note that DeepNavi is a unified navigation
framework, which can also process other input signals, such as videos, radio frequency fingerprints and visible
light, among others, with corresponding initial feature extractor. Afterwards, we can feed them into our sequence-
based network for navigation. Furthermore, DeepNavi can be integrated into other techniques, such as particle
filters, to calibrate user locations and orientations. Based on the practical needs, our model can be either spot-based
with instant inputs or sequence-based with sequential inputs with its general architecture. It can also be deployed
in various mobile platforms, such as smartphones, Google Glasses or robots, for accurate indoor navigation.
The remainder of this paper is structured as follows. After reviewing the related work in Section 2, we

overview the workflow of DeepNavi in Section 3. Then, we elaborate the network design in Section 4, followed
by experimental evaluations in Section 5. We discuss the limitations of DeepNavi in Section 6 and conclude in
Section 7.
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2 RELATED WORK
As Global Positioning System (GPS) signal does not penetrate well indoors, researchers resort to other signals for
accurate indoor localization and navigation [14, 15]. Based on navigation modes, recent approaches are broadly
divided into two categories: spot-based and sequence-based. We compare these approaches as follows.

Spot-based navigation approaches are those that use instant inputs to estimate current location and orientation.
Li et al. [29] build a context model of the environment and estimate user locations with dynamic Bayesian
network using an input image. PoseNet [24] trains a neural network to regress current location and orientation.
CloudNavi [41] builds a 3D point cloud using 3D cameras such as Google Tango 2. Then, it registers collected
images to the cloud and fuses particle filters with inertial readings to navigate users. In addition to images, radio
frequency (RF) signals, e.g., Wi-Fi and Bluetooth, are employed during indoor localization and navigation as well.
SiFi [11] collects channel information of targets 3 from a special access point with several spatially distributed
antennas. Then it calculates target locations with the time of arrival measured by these antennas. Murata et
al. [33] navigate users by comparing user-collected Bluetooth fingerprints with a database. Pulsar [51] estimates
the angle of arrival from several light sources and triangulates targets at a spot. Despite their high accuracy in
specific trial sites, these approaches are prone to signal noises. For example, image-based navigation approaches
rely on rich colors and textures to find location clues. These images can sometimes be blurry due to shaky
hands of users or a loss of focus, leading to unstable features and large errors [19, 20]. RF signals, on the other
hand, are less stable in complicated indoor environment due to multi-path fading and temporal occlusions with
wall partitions and nearby pedestrians [37, 53]. Different from these approaches that leverage single signal (e.g.,
visible light, Wi-Fi, Bluetooth) for indoor navigation, we study a general signal-fusion framework to extract more
distinguishing location features and achieve higher accuracy.
In order to enhance the navigation accuracy, some researchers propose to fuse complementary inputs. For

example, Argus [46] leverages distance constraints inferred from several images to reduce Wi-Fi localization
errors. However, it asks users to select and point to a landmark, which is tedious and error-prone for novice
users. HyRise [8] proposes a hybrid strategy that leverages Wi-Fi readings and barometers to estimate current
floor. ViNav [7] fuses Wi-Fi with images to navigate users with higher accuracy and efficiency. First, it narrows
down the location space of a user with a Wi-Fi fingerprint. Then it estimates current position and orientation
within this area based on structure from motion (SfM) [12], which is computationally expensive during the
3D construction and navigation stage in a large trial site. DeepNavi also fuses inputs for more accurate indoor
navigation. However, it advances these spot-based approaches in several ways. First, DeepNavi is a general
framework based on sequential architectures. It works with both spot-based and sequence-based navigation
modes, thus achieving higher applicability. Second, DeepNavi realizes direct feature-level fusion schemes. By
non-linear mapping of features from different inputs to a common feature space, it fuses them directly at the
feature level so as to reduce the propagation error of sequential fusion approaches (use one input to infer a
candidate area and localize with another input). Furthermore, DeepNavi incorporates ensemble learning to further
reduce input noises and achieves higher accuracy. By training prediction models in the offline stage, it realizes
efficient and real-time navigation services.

In contrast to spot-based navigation systems, sequence-based ones extract temporal correlations from sequential
inputs collected in a time window for indoor navigation. ppNav [49] proposes fingeram, which consists of
diagrammed sequential Wi-Fi fingerprints, and compares it with those collected by a surveyor to give navigation
instructions. To reduce the impact of fluctuating Wi-Fi signals on the localization accuracy, Tian et al. [42] extract
temporal correlations based on a new propagation model to locate a target accurately. Lightitude [18] measures
changes in light intensity values and aligns a query sequence with a database to localize. Other sequence-based

2https://en.wikipedia.org/wiki/Tango_(platform)
3We use “target” to refer either a human or a robot to be localized.
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Fig. 1. The overall workflow of DeepNavi. We train our prediction models in the server and use them to predict the location
and orientation of a client.

approaches further enhance the navigation accuracy by fusing several inputs. Magicol [39] proposes bi-directional
particle filters and uses opportunistic Wi-Fi sensing to reduce localization errors. Travi-Navi [52] calculates the
locations inferred with instant Wi-Fi and geomagnetism, respectively. Then it fuses these location estimations
with equal weight values to estimate target positions. DeepNavi further advances these approaches in that it is
general enough to fuse several inputs in different navigation modes. This is because spot-based navigation is a
special case of sequential navigation with instant inputs. Furthermore, it introduces a direct feature-level fusion
scheme to realize more effective feature fusion and uses ensemble learning to reduce the impact of environmental
noises, thus achieving higher accuracy.

As discussed earlier, particle filters are widely used in many localization and navigation tasks [4, 31], because
they help to reduce errors with user motion and floorplan constraints. Different from particle filter-based
approaches, DeepNavi focuses on effective feature extraction and fusion for indoor navigation. Therefore, it
is orthogonal to particle filter-based approaches. However, it is possible to integrate particle filters into our
framework to further reduce errors with floorplan constraints. These particle filter-based approaches can also
use our framework to opportunistically calibrate current location and orientation.

3 OVERVIEW OF THE SYSTEM WORKFLOW
We show the overall workflow of the proposed navigation system in Figure 1. To demonstrate, we navigate
targets with images and geomagnetic sequences. By fusing these two inputs, we provide accurate navigation in
popular areas with sparse (e.g., offices, hospitals) and abundant (e.g., shopping malls, food plaza) visual textures.

Our navigation system consists of two stages: an offline stage and an online stage. In the offline stage, a surveyor
walks and uses a client program to record input signals automatically. During the survey, this surveyor initiates
the program, walks in the site, thus speeding up the site survey. Then, we label the ground truth locations and
orientations and store them in a database. With the collected data and labels, we leverage the ensemble learning
technique to learn several models with our training data and combine them together for higher accuracy.

In the online navigation stage, a target initiates a client program to record images and geomagnetic sequences.
Then the client program uploads collected data to a remote server automatically. Upon receiving the query
data, DeepNavi estimates current location as well as orientation, and sends navigation instructions to this
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Table 1. Major symbols in DeepNavi.

Notations Definitions
xt Estimated 2-D location of a target at time t
ot Estimated 4-D quaternion of a target at time t
Qt Output state of RNN at time t
ht Hidden state of RNN at time t
Mt Magnetic sequence with fixed length at time t
It Image frame collected at time t
kt Concatenation of location and orientation estimations at time t
S Number of ensembles
G Number of Gaussian distributions in mixture models

target. Specifically, we feed inputs into our network for initial feature extraction. Then we generalize them with
additional FC layers and fuse features from different signals (Section 4.1). Afterwards, we discuss ensemble
learning-based navigation using MDN in Section 4.2. Finally, DeepNavi gives location xt and orientation ot at
time t , respectively.
We show major symbols used in this paper in Table 1.

4 CORE FRAMEWORK OF DEEPNAVI
Indoor navigation with a single input source can be error-prone due to environmental ambiguities in complicated
indoor sites, e.g., similar geomagnetic patterns with symmetric building structures, visual ambiguities with
repetitive window and door structures in office areas. These ambiguous inputs can lead to large navigation errors
(in terms of location and orientation). Furthermore, due to the impact of noises, e.g., blurry images, fluctuations,
extracted features from inputs can be noisy as well, leading to large errors in location and orientation predictions.
Many existing approaches focus on giving numerical estimations, but do not provide predictive uncertainties,
which may lead to a lack of trust in navigation instructions.

Based on these observations, we propose a unified, signal-fusion framework for indoor navigation. We illustrate
the framework in Figure 2, which consists of three major components: feature extraction and fusion (Section 4.1)
and target navigation (Section 4.2). Then, we discuss the benefits of the ensemble learning on the navigation
performances in Section 4.3.

4.1 Unified Feature Extraction and Fusion
As discussed above, recent navigation approaches are broadly divided into two categories: spot-based and sequence-
based. Spot-based navigation approaches leverage instant inputs to infer current location and orientation. In
contrast to them, sequence-based navigation schemes estimate current location and orientation with sequential
inputs in a time window. They advance spot-based approaches by exploiting temporal correlations of inputs to
improve navigation accuracy.
In this section, we discuss the design of a unified feature extraction framework for both spot-based and

sequence-based indoor navigation. Our intuition is that a spot-based navigation scheme is a special case of
sequence-based navigation, where the number of temporal inputs equals 1. Based on this, we design a unified
navigation framework based on recurrent network structures, e.g., RNN, which are capable of processing
sequential inputs with its recurrent architecture (left part in Figure 2).

Recent approaches leverage various inputs for indoor navigation, such as Wi-Fi, radio frequency identification
(RFID), images, visible light and geomagnetism, among others. These inputs vary from each other in various
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Fig. 2. Framework of DeepNavi, which consists of three parts, feature extraction, feature mapping and fusion and location &
orientation estimation.
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Fig. 3. An illustration of RNN that processes sequential inputs.

different aspects, such as dimensions (images with tens of thousands of pixels v.s. geomagnetic vector with 3
values). To cope with these differences, we use different neural networks (NN) to extract initial features from
corresponding inputs. Take images for example, we use CNN to extract features. This is because CNN looks at
each patch of an image, processes it with small convolutions and grasps a local regional understanding. Therefore,
CNN is better with images. As for other inputs, such as Wi-Fi fingerprints or geomagnetic sequences, we can use
RNN to extract features. This is because RNN uses a series of nodes to form a directed graph, which allows it to
capture the temporal correlations of input sequences. In addition, we can also process radio fingerprints with
RNN. This is because a fingerprint can be viewed as a sequence of ordered received strength values. By using the
above networks to extract initial features, we use the RNN architecture to further extract temporal correlations.

As an example, we illustrate the feature extraction through RNN in Figure 3. Let mt be the signal readings at
time t . Please note that mt can be any signal sampled at this time, such as a radio or a geomagnetic fingerprint.
Without loss of generality, we use mt to denote geomagnetic fingerprint collected at time t .
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(a) Consecutive frames taken while a user is walking (from left to right).

(b) Fluctuating geomagnetism at either ends and center of a long corridor.

Fig. 4. Noisy signals collected in a trial site. Images taken by the surveyor or user could be noisy due to the motion blur.
Geomagnetic readings can also be fluctuating with cheap mobile sensors.

The internal state of RNN at time t is denoted by ht , which is calculated based on previous RNN state ht−1 and
current input mt as follows:

ht = tanh(W1mt + b1 +W2ht−1 + b2), (1)
where W1 and W2 are the weights for current input and previous hidden state, respectively. Different from other
neural networks, RNN shares weights across layers, which reduces the number of parameters in the network
and facilitates fast training. Qt is the output corresponding to mt , which indicates the estimated location and
orientation.

After extracting initial features from inputs separately, we then map these features through non-linear mapping
layers to a common feature space, which reduces the discrepancy of initial features. Specifically, we insert
additional FC layers to generalize these extracted features. We illustrate this in the middle part in Figure 2.

4.2 Joint Pedestrian Navigation and Uncertainty Estimation
Due to the environment and user factors, inputs collected by ordinary users are usually noisy. Figure 4(a) shows
several consecutive images taken during the navigation. It shows that images taken by users could be blurry
(first two images), which renders feature extraction unreliable. In addition, we have collected geomagnetism at
three different positions, i.e., two ends and middle of a corridor (Figure 4(b)). Although we keep the device static
at these positions, geomagnetic readings are fluctuating due to sensor noises, leading to large errors. Inspired
by Lakshminarayanan et al. [26], we propose to leverage deep ensemble learning in our navigation system for
accurate predictions. Specifically, we learn multiple models with our training data and combine them together.
By model combination, we are able to smooth out temporal navigation errors and achieve sufficient accuracy.
In addition, we leverage MDN and model data distribution with mixture models so as to provide uncertainty
estimations simultaneously (right part in Figure 2).

To train a network that determines the location and orientation simultaneously, we define our loss function as
follows. Suppose we have N test cases in a mini-batch. The ground truth location and orientation corresponding
to n-th test case are xn and on , respectively. The loss function is defined as follows:

L =

N∑
n=1

(| |xn − x̂n | | + α | |on − ôn | |), (2)
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Fig. 5. Geomagnetic data fitting with Gaussian distribution(s). It shows that the fitting is better with mixture distributions.

where x̂n and ôn denote corresponding estimated location and orientation, respectively. α is a weight value that
balances location and orientation losses. We use | | · | | to denote L2 norm.

According to the above loss function, our network determines conditional mean location and orientation based
on our training data. Then the probability distribution of our estimation is:

pθ (kn |In ,mn) = N(µθ (In ,mn),σθ (In ,mn)), (3)

where kn = [x̂n , ôn], which is the concatenation of location and orientation estimations. In and mn denote the
image and magnetic sequence of test case n. θ denotes the parameters of our network. Denote the predicted
mean and variance by µθ (In ,mn) and σθ (In ,mn), respectively. For notation simplicity, we omit θ and subscript
n in the following discussions. Based on the Gaussian distribution, our objective is to minimize the negative
log-likelihood:

− logp(k|I,m) =
σ 2(I,m)

2
+
(k − µ(I,m))2

2σ 2(I,m)
+ c, (4)

where c is a constant value. This satisfies the Gaussian distribution with mean µ and variance σ .
However, the assumption of a single Gaussian distribution is restrictive for training and trial data, which

reduces its applicability in practical scenarios. Figure 5 shows the distribution of received geomagnetism from
the x axis of the magnetometer collected in the office area (Figure 6). The total number of readings is 45, 489. We
use MATLAB Gaussian fitting 4 to find a distribution that fits these readings. The fitting with mixture models
(consists of three Gaussian components), however, is better with collected data based on differences between
predictions and real values. This indicates that using mixture models for data prediction could lead to better
accuracy in practical scenarios. Therefore, we replace previous regression layers with MDN for estimation. By
leveraging mixture models, the distribution of location and orientation estimations becomes:

p(k|I,m) =

G∑
д=1

ωдN(µд(I,m),σд(I,m)), (5)

4https://ww2.mathworks.cn/help/stats/gmdistribution.html
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where G is the number of Gaussian distributions in our mixture model and ωд is the weight corresponding to
д-th (1 ≤ д ≤ G) model. These sum of these weight values of each Gaussian component is 1:

G∑
д=1

ωд = 1. (6)

Based on the MDN, we elaborate the estimation of location and orientation with ensembles as follows. Given S
models, the predicted location and orientation of a target is:

µ⋆(I,m, k) = S−1
S∑
s

G∑
д

ωs,д(I,m, k)µs,д(I,m, k), (7)

while the variance σ of current estimation is:

σ 2
⋆(I,m, k) = S−1

S∑
s

G∑
д

(ωs,д(I,m, k)(σ 2
s,д(I,m, k) + µ

2
s,д(I,m, k))) − µ2

⋆(I,m, k). (8)

Consequently, we generate more accurate location and orientation estimations. The reasons are as follows.
First, we model our data with mixture distribution models rather than with a single Gaussian model. Therefore,
our framework is more practical. Second, we generate more diverse models with the ensemble learning technique.
Then, we perform model combination by combining multiple models together to make more accurate and
powerful one for navigation.

4.3 Discussions on the Benefit of Ensemble Learning
In this section, we theoretically show that ensemble learning boosts the navigation accuracy. We consider a
neural network f̂ (·) used for regression with bias B from the ground truth, modeled as:

ŷ = f̂ (x) = f (x) + B, (9)

where the ground truth value is:
y = f (x). (10)

We use B to denote the overall bias of the prediction model. The bias is classified into two categories: bias with
zero mean value and bias with non-zero mean value. We discuss the improvement with ensemble learning with
zero mean value and non-zero value separately.
Suppose B consists of only zero mean value distributions, we have:

ŷ = f̂ (x) = f (x) + b, (11)

where b is a random variable over randomized models trained on a given x and b is independent of x.
Using ensemble learning, the predicted value ye is defined as follows:

ye = S−1
S∑
s=1

ŷs . (12)

Suppose b is distributed with zero mean value, then we have:

ye = y + S−1
S∑
s=1

bs . (13)

When the number of ensembles S is sufficiently large, S−1 ∑S
s=1 bs becomes 0, its mean value. In this case, the

final estimation ye is close to its true value.
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(a) Office area. (b) Food plaza.

Fig. 6. Two trial sites in our experiment. (a) A featureless office area. (b) A spacious food plaza.

However, in many cases where the expected mean of B is a non-zero value with additive bias. Then the
regression model in Equation 9 becomes ŷ = f̂ (x) = f (x) + b + d, where d denotes the non-zero bias. Based on
the above, the expected error with ensemble learning is:

E(εe ) = E(S−1
S∑
s=1

(f (xs ) + N −1
N∑
i=1

(bsi + dsi ) − ys )2), (14)

where N denotes the number of trial cases. The expectation of error without ensemble learning is:

E(εē ) = E(S−1
K∑
s=1

(f (xs ) + bs + ds − ys )2). (15)

If S is large enough, we can replace N −1 ∑N
i=1(bsi + dsi ) with its mean and apply inequality E(X 2) ≥ E2(X ):

E(εe ) ≤ E(εē ). (16)

This depicts that the ensemble learning reduces the navigation error given sufficient number of models (E(εe )
smaller than E(εē )). We further experimentally demonstrate the improvement of accuracy with the ensemble
learning in Section 5.2.

5 ILLUSTRATIVE EXPERIMENTAL RESULTS
We have implemented the proposed framework and conducted extensive experiments in two different trial
sites to evaluate its performance. In this section, we first discuss our experimental settings, including trial sites,
comparison schemes and baseline parameters in Section 5.1. Then we illustrate the navigation performance in
terms of location and orientation errors in Section 5.2. Finally, we evaluate the system overhead including time
and energy consumption in Section 5.3.

5.1 Experimental Settings and Comparison Schemes
We have conducted extensive experiments in two different trial sites, an office area in our university and a food
plaza. Covering around 2, 800m2, the office area consists of long corridors, white walls and sparse visual features
(Figure 6(a)). In contrast to the office area, the food plaza (covering around 3, 500 m2) has many stores, rich
features and large open space (Figure 6(b)) with relatively stable geomagnetic readings.

In the survey stage, we walk along designated paths (denoted by red solid lines) that cover popular areas in our
trial sites to collect signals. Although the food plaza is spacious, it has many tables and chairs densely distributed
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Fig. 7. Floorplans of our trial sites, where red solid lines indicate our survey paths.

across this site. Therefore, we find paths that many customers walk along to collect training data. Figure 7
illustrates floorplans and survey paths in these sites. We collect videos (around 30 frames) and geomagnetic
sequences (around 50 readings) per second. Our dataset with images and geomagnetic sequences is available at
GitHub 5. Please note that the data collection with videos and geomagnetic sequences is fast due to their high
sampling frequency. Furthermore, we do not have to stop to select landmarks or take independent images. In
addition to images and geomagnetic sequences, we have also collected images and Wi-Fi fingerprints in these
trials sites to evaluate the navigation error with them. In the survey stage, we collect videos (around 30 frames per
second) and Wi-Fi fingerprints along the survey paths. However, as the sampling frequency of Wi-Fi fingerprints
is relatively slow (around 1Hz), we design survey grids and stop at these points to collect around 10 fingerprints
during survey. To generate our training and evaluation dataset, we align them according to the timestamps when
an image, a geomagnetic sequence or a Wi-Fi fingerprint is collected. Then, we pair an image with a geomagnetic
sequence or a Wi-Fi fingerprint to generate a training or an evaluation sample.

In our experiment, we take Intel RealSense Camera ZR300 6 and attach Huawei Mate 9 with it for location and
orientation labeling. Intel ZR300 has a stereoscopic depth-sensing camera for distance measurement (from target
to the device), a fisheye camera and an accurate inertial measurement unit. We use the robot operating system
(ROS) 7 and an optimization-based multi-sensor state-estimator termed VINS-Fusion 8 to process its readings
and determine its accurate location and orientation with the inputs from Intel ZR300. Based on location and
orientation estimations, we label ground truth locations and orientations of trial devices because they are tied
to each other closely and have the same location and orientation values. Being a signal-fusion framework, the
main focus of this paper is to fuse different signals together for indoor navigation. Therefore, the estimation of
location and orientation is based on input signals. In our experiment, we do not recover user trajectories with
motion sensors for attitude detection.
We invite two volunteers to take part in our trials. Both of these volunteers are male students from our

school. The heights of these volunteers are around 166cm and 175cm, respectively. During the trial, we ask these
5https://github.com/gh835470669/DeepNaviDataset
6https://software.intel.com/en-us/realsense/zr300
7https://www.ros.org/
8https://github.com/HKUST-Aerial-Robotics/VINS-Fusion
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volunteers to hold the phone in upright position so that it has clear view ahead. However, we do not ask users to
hold the phone that is exactly perpendicular to the floor. In the office area, where the path is constrained by the
corridors (pedestrians usually walk along corridors to find destinations), we ask one volunteer to conduct the
navigation trial. The volunteer (175cm) select ends of corridors (denoted by A, B and D) as his starting positions
and destinations. This volunteer selects three set of starting positions and destinations (A to B, B to D via C and
D to A) and takes these tasks consecutively. Then, our DeepNavi gives instructions and guides the volunteer
from each start position to the destination. The trial distance in this site is around 220m with 228 trial cases.

While in the food plaza, which covers more areas, we have two volunteers. Each of them selects several pairs of
starting and ending positions (usually they are locations near the popular counters, lifts or escalators). Then, they
feed these positions into our application. Based on these information, DeepNavi provides navigation plans and
guides users to their destinations from their starting positions. Volunteer 1 chooses three pairs of start positions
and destinations: A to B, D to H and E to F. On the other hand, volunteer 2 chooses four pairs: C to D, K to E, H
to L, H to C. To sum up, the overall trial distance is around 309m with 520 trial cases in the food plaza. In our
trial, we also use the ZR300 to record images, depth readings, inertial readings and calculate current position and
orientation with the ROS framework. We use them as ground truth values. In the navigation stage, volunteers
collect 1 images, record 50 geomagnetic samples or 1 Wi-Fi fingerprint per second for evaluation. In the food
plaza, volunteers take turns in doing the navigation tasks.

Without loss of generality, we use the ResNet [13] to extract visual features from input images due to its strong
learning ability and efficiency in training with its residual technique. However, it is also possible to integrate
other convolutional networks according to the requirements of specific applications. In the training stage, we
first resize images to 256x256 and then center crop the input image of 224x224 pixels as ResNet does in their
experiment. While in the test stage, we conduct random crop of images. We remove the last few classification
layers and get high-dimensional features from ResNet. Then we use the gated recurrent units (GRU) [5] to extract
correlations of sequential inputs, where we feed each individual input to a node and use the output vector as the
magnetic location feature. This is because it incorporates the forget gate so as to retain short-term memory of
recent inputs and works well with geomagnetic sequences with low dimensions. The number of layers in the
GRU is set to 4 in our experiment, with which we are able to extract distinguishing features. Furthermore, it is
also possible to integrate other recurrent networks, such as LSTM [17], into our framework and extract features.
We train our neural network and conduct evaluations on an Ubuntu Server (14.04) with an NVIDIA GTX 1080
GPU card, an Intel i7-6700 CPU card and 48 GB memory. We implement our network based on PyTorch 1.0.1 9.

We compare the navigation accuracy with the following state-of-the-art approaches:

• PoseNet [24]: PoseNet is an image-based localization system. Using training images and corresponding
locations and orientations, they fine-tune GoogLeNet [40] to regress current position and orientation. For
fair comparison, we implement PoseNet with ResNet and evaluate accordingly.

• MaLoc [45]: MaLoc adopts augmented particle filter by considering the geomagnetic distribution at each
position. Based on the distribution, it sets corresponding weights and employs weighted average of particles
to track users.

• Travi-Navi [52]: Travi-Navi is a fusion navigation system, which collects both geomagnetism and Wi-Fi
and fuses them with particle filters to navigate users continuously. In our experiment, we use geomagnetic
sequences for localization.

To evaluate the generality of the proposed DeepNavi with other signal combinations, we conduct another trial
with images and Wi-Fi fingerprints. We introduce the baseline comparison schemes as follows:

9https://pytorch.org/
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• DeepNavi-Wi: DeepNavi-Wi is a baseline scheme that navigates users with images and Wi-Fi fingerprints.
It uses the same network framework as DeepNavi, where Wi-Fi fingerprints are viewed as a sequence of
received values and processed by RNN.

• Wi-Fi: To evaluate the improvement over pure Wi-Fi, we remove the CNN module of DeepNavi-Wi so it
estimates current location with a single Wi-Fi access point. Each Wi-Fi fingerprint is viewed as a signal
sequence and is processed by recurrent networks.

We have conducted extensive experiments to evaluate the performance in our trial sites. In the office area,
we select 10 stable access points that have large coverage and build a W-Fi fingerprint database. While in the
shopping mall, we have 50 access points deployed by shop owners. The reason we use more access points in the
food plaza is that it is comparatively larger. In the survey stage, we collect fingerprints at 164 reference points
(RPs) as RADAR [1] does, which are vectors of received signal strength indicators collected at known locations.
While in the food plaza, we collect fingerprints at 221 RPs. At each RP, we collect 10 fingerprints and use their
average received signal strength values to reduce the impact of signal fluctuations. The distance between two RPs
in the office area is around 1.2m while that in the food plaza is around 1m. As neural networks usually require
a large amount of training data, we augment the Wi-Fi dataset by linear interpolation between two adjacent
RPs. This is because they are close to each other. Specifically, we insert two fingerprints between two RPs. After
interpolation, we associate an image with a Wi-Fi fingerprint based on locations where they are collected and
construct our training dataset.
The performance metrics are defined as follows:
• Location error: In the n-th trial, the ground truth location of a user is xn while estimated one is x̂n . We
define the mean positioning error with Euclidean distance between ground truth locations and estimated
ones as follows:

El = N −1
N∑
n=1

| |xn − x̂n | |, (17)

where | | · | | denotes L2 norm.
• Orientation error : In the n-th trial, the ground truth orientation of a user is on while estimated one is ôn . We
evaluate the orientation error with angular distances between ground truth and estimated ones as follows:

Eo = N −1
N∑
n=1

arccos(on , ôn). (18)

• Time and power consumption: To evaluate the power consumption, we develop an Android application that
collects and sends images and magnetic readings (or images and Wi-Fi fingerprints) to a remote server
through Wi-Fi continuously as in [2]. Then we determine the power drop based on percentage of power
displayed in the status bar before and after the evaluation. Then, we kill all other applications and measure
the power drop within a same amount of time. By subtracting these two values, we get the overall power
consumption of the application. Finally, we determine the average energy consumption of each trial by
dividing the overall power consumption by the total number of trial cases. As for time consumption, we
measure the overall time of all trials and divide it by the trial number to get the average time consumption
for each trial.

We compare the orientation error with PoseNet, DeepNavi and DeepNavi-Wi. As MaLoc and Travi-Navi do
not give orientation estimations in their paper, we do not compare the orientation with them.

We present our baseline parameters in this paper in Table 2. The training sample is defined as a pair of input
signals for training. Similarly, an evaluation sample is a pair of input signals for evaluation. Take images and
geomagnetic sequences for example, we first align them based on the timestamps of collection. Then, we pair an
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Table 2. Baseline parameters in our experiments.

Parameter Values
Food Plaza Office

Training samples (image+magnetism) 24,668 13,824
Evaluation samples (image+magnetism) 520 228
Training samples (image+Wi-Fi) 470 490
Evaluation samples (image+Wi-Fi) 149 163
Number of images 1 1
Geomagnetism length 16 16
Epoch 300 300
Ensemble 3 3
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Fig. 8. Location error v.s. training samples (office area).
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Fig. 9. Orientation error v.s. training samples (office area).

image and a geomagnetic sequence with 16 readings, where the image and the last reading of geomagnetism
are collected at the same time. After experimental evaluations with α , we set its value to 1 to achieve better
estimation accuracy.

5.2 Illustrative Navigation Results
In this section, we present illustrative navigation results in our trials.

Figure 8 illustrates the location error with different portions of training data. It shows that the mean location
error decreases with more training data. This is because the network learns more robust features with more
training data, which is helpful for increasing accuracy. The decrease in navigation error slows down with more
than 1/8 of training data. This is because we have sufficient location information from the training data. With
more than 1/2 of training data, we are able to achieve sufficient location accuracy. However, the time consumption
for network training increases with more training data. Therefore, it is possible to train navigation network with
1/2 of data to achieve trade-off between location errors and training time.

Figure 9 presents the orientation error with different portions of training data. It shows similar trend as that of
the location error. With more training data, the orientation error decreases. This is because our network model
learns more distinguishing features from more training data, thus reducing the orientation error significantly.
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Fig. 11. CDF of orientation error (office area).

As the portion of training data is larger than 1/8, the decrease in orientation error slows down. This is because
our model has learned sufficient information from the training data. With even more data, the orientation error
remains relatively stable. Therefore, it is practical to train the navigation model with around 1/2 of training and
achieve sufficient accuracy.
Figure 10 shows the cumulative localization error in the office area. Although this site contains repetitive

structures (e.g., doors, windows), which are usually challenging for traditional visual feature point-based ap-
proaches (e.g., scale-invariant feature transform, speeded-up robust features), experimental results show that the
proposed DeepNavi and DeepNavi-Wi are able to achieve sufficient accuracy. The reasons are as follows. First, by
fusing visual images with magnetic sequences or Wi-Fi fingerprints, we are able to generate more distinguishing
features in sites with sparse visual textures for accurate navigation. Second, we leverage deep neural networks to
find signal correlations between signals and extract joint features for navigation. Third, we fuse predictions from
multiple models for navigation, which reduces location errors significantly.
Figure 11 presents the orientation error in the office area. It demonstrates that our fusion network achieves

comparable accuracy in featureless office area with images and geomagnetism. In addition to images and
geomagnetic sequences, we have also evaluated the orientation error with images and Wi-Fi. Experimental results
show that the mean orientation errors are similar: DeepNavi (3.1 degrees), DeepNavi-Wi (4.2 degrees) and PoseNet
(3.6 degrees). The reason that the errors are similar is that we estimate current orientation based on images. Other
signals, such as Wi-Fi fingerprints and geomagnetic sequences, do not provide such information themselves.
Therefore, adding them does not help reduce the orientation error. Consequently, the mean orientation errors of
them are similar. In many indoor sites, corridors are usually orthogonal to each other (relative angle is around
90 degrees). Our mean orientation errors are significantly smaller. Therefore, the errors in orientation do not
deteriorate the quality of navigation services.

To demonstrate the effectiveness of feature fusion, we collect images and geomagnetic readings at 105 positions
uniformly distributed in the office area. We present difference matrices of visual, geomagnetic and fused features
in Figure 12(a), Figure 12(b) and Figure 12(c), respectively (Blue indicates small differences and yellow indicates
large differences). It shows that features extracted at distant locations (upper right and lower left areas) can be
similar, which leads to large navigation errors. With feature fusion, we are able to increase the distinctiveness
of features and enlarge differences between distant positions (many blue areas are turned into yellow or green
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Fig. 12. Feature differences between locations uniformly selected in an office area. (a) Feature differences with images. (b)
Feature differences with geomagnetism. (c) Feature differences with fusion.
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in the upper right and lower left areas in Figure 12(c)). This proves that our framework is able to enhance the
distinctiveness of features.
Figure 13 shows consecutive location errors. It shows that by inserting FC layers to process diverse features

after initial feature extraction, we are able to reduce location errors. This is because raw features extracted from
different signals are significantly different from each other. By inserting additional FC layers, we are able to map
these raw features to a common feature space through non-linear mapping. Combined with the learning capacity
of recent neural networks, our network fuses these signals effectively, thus increasing the accuracy.

Figure 14 presents the navigation loss with different numbers of training epochs. It shows that the navigation
error (in terms of location and orientation error) decreases with more epochs. This is because our model can fit
our data better with more iterations. As the number of epochs grows larger, navigation error decreases more
slowly. This is because our model has learned sufficient information from training data. Finally, the loss converges
after 300 epochs. It takes more time to train a network with more epochs. To achieve trade-off between navigation
accuracy and training time, we train the model for 300 epochs.
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Fig. 15. CDF of location error (food plaza).
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Fig. 16. CDF of orientation error (food plaza).

We compare the location error in Figure 15. It shows that the proposed DeepNavi and DeepNavi-Wi are
able to achieve sufficient accuracy in the food plaza with large open areas. The trial site is challenging for
geomagnetic localization approaches, mainly due to magnetic ambiguities in open areas. On the other hand,
vision-based navigation approaches (PoseNet) can achieve sufficient accuracy in the food plaza with rich visual
textures, e.g., store logos. However, due to environment and user factors, such as similar textures of distant store
logos, strong illumination and motion blur, the location error can be large with noisy features. By incorporating
complementary signals, such as images and geomagnetism, DeepNavi extracts more distinguishing location
features, thus increasing the location accuracy. In addition to geomagnetism, we have also evaluated the location
error with images and Wi-Fi fingerprints. It shows that we are able to achieve sufficient accuracy with images
and Wi-Fi (DeepNavi-Wi) as well. This proves that our approach is general enough to other signal combinations.

Figure 16 presents the orientation error in the food plaza. It shows that the mean orientation errors of DeepNavi
(7.5 degrees) and DeepNavi-Wi (7.4 degrees) are comparable to that of PoseNet (5.6 degrees). This is because in
spacious food plaza, visual features are able to provide sufficient orientation information, thus the error remains
stable in the food plaza. The relative angles between two corridors indoors are usually 90 degrees (orthogonal
to each other). Compared with the relative angle, the orientation errors are small. Therefore, the difference in
angular error does not degenerate the quality of navigation services.
We show the CDF of location and orientation errors of two volunteers with DeepNavi in Figure 17(a) and

Figure 17(b), respectively. It shows that the location and orientation errors with two volunteers in our trial
sites are similar. This is because we use images and geomagnetic signals for navigation, which does not rely on
accurate measurement of stride lengths of different users. Furthermore, the images taken by two volunteers are
similar, leading to comparable accuracy. Therefore, our approach achieves stable navigation performance with
different volunteers.
Figure 18 shows the uncertainty estimation with different location errors. It shows that as the location error

increases, uncertainty value increases accordingly. This demonstrates that by inserting MDN into our framework,
the proposed network learns uncertainty values from training data. Therefore, our fusion network not only gives
navigation estimations, but also uncertainty values as well. Based on these values, our framework can be easily
extended to leader-follower navigation systems, where a follower is required to follow the designated path of a
leader. Based on the changes in uncertainty values (larger than 0.05), the follower could be 2m away from the
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Fig. 17. Location and orientation errors using images and geomagnetic readings with different volunteers (food plaza).
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(w/o) unseen data (food plaza).

designated path. In case of deviations, it is possible to deploy some techniques, such as vibrations or toasts, to
alert users promptly.

Figure 19 illustrates distributions of uncertainty values with mixture density networks and ensembles in leader
and follower mode. It shows that in the case with small deviations (say, fewer than 10m), the uncertainty values
are usually small and are distributed unevenly. In these scenarios, DeepNavi is confident about navigation results.
However, if a follower is significantly away from designated path, uncertainty value grows larger and more
scattered. Based on this, we are confident that a follower is following a path if uncertainty value is smaller than
0.05. Otherwise, the follower is very likely to deviate from path if uncertainty value is significantly larger than
0.1.

Figure 20 presents the cumulative location error with (w/) and without (w/o) ensemble training. It shows that
the accuracy without ensembles has longer tails than that with ensembles, indicating larger errors. The reasons
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Fig. 20. Comparison of location error during navigation with
(w/) and without (w/o) ensembles (food plaza).

2 4 6 8 10

Number of Models

1

1.5

2

2.5

3

L
o
c
a
ti
o
n
 E

rr
o
r 

(m
)

Fig. 21. Location Error v.s. Number of Models (food plaza).

are as follows. In the online navigation stage, the location error could be large due to noisy input signals, e.g.,
blurry images, noisy geomagnetism readings. In our DeepNavi, we introduce the ensemble learning, which learns
multiple models from training data. Then in the online stage, it provides more diverse predictions with multiple
models. By combining them together, we are able to smooth erroneous predictions, thus giving more accurate
location estimations with these noisy inputs.

Figure 21 presents the mean location error with different numbers of models during navigation. It demonstrates
that by incorporating more models, we are able to reduce the location error by a large margin. However, as the
number of models increases, the decrease in translation error slows down. This is mainly because we extract
sufficient location clues. The introduction of more than three models does not add more additional location clues
in our trial site. Therefore, translation errors do not change much. However, it takes more time to train more
models. To achieve trade-off between training time and accuracy, we train three models in our experiment.

5.3 System Deployment Overhead
In this section, we evaluate the time, network and energy consumption for navigation using Huawei Mate 9. It
takes fewer than 30 minutes to survey each of these sites with videos and geomagnetic sequences. The time
consumption of data collection is low compared with image taking of all landmarks in this site (around 2 to 3
hours). This is because we just need to initiate a data collection program, which records videos and geomagnetism
automatically without any user participation. In the offline stage, it takes around 70 minutes to train a neural
network in our server with an Nvidia 1080 TI graphics card. To sum up, it takes around 3.5 hours to train 3
models with ensemble learning. Please note that the training is conducted offline. Therefore it does not incur
additional time of online navigation.
To evaluate the time consumption of a navigation query, we send an image (640x480, around 450KB) and 16

geomagnetic samples (less than 2KB in double precision format) to a server continuously. Theoretically, the
overhead of network transmission is around 0.036s with a 100Mbps Wi-Fi router. In the navigation stage, it
takes around 0.015s to process one image and a geomagnetism sequence in our server. After estimating the
location and orientation, our server sends them back to the client. To sum up, the overall time consumption of
a navigation query should be around than 0.051s (=0.036+0.015). Therefore, it is possible to process more than
19 (=1 ÷ 0.051) navigation queries in a second. To evaluate the power consumption in reality, we implement an
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Android application that records images, geomagnetic readings or Wi-Fi fingerprints continuously and sends
them to a server through Wi-Fi. Before our trial, we kill all other background applications. Then, we measure
signal readings (e.g., an image, a geomagnetic sequence or a Wi-Fi fingerprint), record them and send them to the
server through Wi-Fi network. Without specific optimization, the sampling frequencies of images, geomagnetism
and Wi-Fi are 1.2Hz, 50Hz and 1Hz, respectively. Limited by the sampling rate, our framework gives around 1
navigation instructions per second. However, with higher sampling frequency, larger bandwidth and streaming
technique, it is possible to give more navigation instructions.
We evaluate the power consumption w/ and w/o our application running in the foreground separately. To

evaluate the power consumption of image taking and uploading, our application takes and sends 3150 images to a
server continuously. During the evaluation, the power drop is around 364mAh (calculated based on the capacity
of the battery and the drop in percentage). Then, we measure the power drop with the same amount of time
without running any applications (around 3mAh). The total power consumption of image taking and sending is
around 361mAh =(364mAh - 3mAh). The average power consumption of taking an image and sending it to a
remote server through off-the-shelf Wi-Fi router is around 0.11mAh (=363 ÷ 3150) in our smartphone.

As for magnetometer, we collect and send 81,833 samples to server (sampling frequency is around 50HZ). The
total power consumption of collecting geomagnetic readings and sending them to a server throughWi-Fi network
is around 286mAh. Then, we evaluate the power drop without any applications (around 1mAh). Then, the total
power consumption with geomagnetic data collection and sending is around 285mAh (=286 - 1). Therefore, the
average power consumption of collecting and sending a magnetic fingerprint (three float values corresponding to
the readings of x, y and z axis from the magnetometer) is 0.003mAh (=285 ÷ 81833). For a single navigation query
(sending 1 frame and 16 magnetic readings to the server), the power consumption is around 0.158mAh (=0.11+0.003
× 16) in our smartphone, which is negligible compared with the capacity of state-of-the-art smartphones 10.

In addition to geomagnetism, we have also evaluated the power consumptionwith images andWi-Fi fingerprints.
The trial application scans Wi-Fi once per second and sends them to a server. Overall, we have 2425 scans and
the total power consumption is around 388mAh. Therefore, the power consumption of scanning nearby Wi-Fi
networks and sending a fingerprint to a server is around 0.16mAh (=388 ÷ 2425). Adding the power consumption
of collecting an image and a Wi-Fi fingerprint, the total power consumption of a navigation query is around
0.27mAh = (0.16+0.11), which is higher than navigation with images and geomagnetism.

6 DISCUSSIONS
In this paper, we mainly focus on signal fusion and accurate indoor navigation with ensemble learning. Extensive
experimental results demonstrate the effectiveness of our proposed approach. Although we have addressed the
essential problem of signal fusion and have achieved accuracy, a few more problems remain to be addressed
(which are not the focus of this paper).

Scalability to multi-floor environment. In this stage, DeepNavi achieves high accuracy in a single floor.
With the emergence of grand shopping malls and tall buildings, it is also necessary to provide multi-story indoor
navigation. One of the key challenges in the deployment in multi-floor environment is the detection of floor or
elevation changes. Currently, DeepNavi mainly focuses on signal fusion for indoor navigation.
Adaptability to environmental changes. In the complicated indoor environment, it is likely that the config-

uration may change constantly due to renovation. In this case, visual appearances and geomagnetism may change
drastically, rendering the previously-trained model inapplicable. In the future, we will study a self-adaptable
navigation system that updates itself according to environmental changes. However, it is challenging to design
such systems, mainly due to the difficulty of alteration detection and network adaptation.

10https://consumer.huawei.com/en/phones/mate20/specs/
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Location privacy of users. Currently, we send user-collected images and geomagnetism to a remote server
for navigation. Although this offloads computational burden to a remote server, it may lead to privacy concerns
from users.

7 CONCLUSION
As an essential part of indoor location-based services (LBS), the accuracy of navigation has a direct impact on the
quality of LBS. However, indoor sites are often characterized as complicated and highly dynamic, which could
lead to degraded accuracy. Prior arts leverage signal fusion for navigation, but they are either specific to signals,
subject to navigation modes or constrained by the environment.
To address the above, we propose a unified fusion framework for indoor navigation. Based on the recurrent

architecture, our model is general to both spot-based and sequence-based navigation. Depending on the inputs,
we use convoutional or recurrent networks to extract initial features. As these inputs vary from each other
significantly in resolution and sampling frequency, we insert additional fully connected layers to map extracted
features to a common feature space for effective feature fusion. To reduce the impact of noisy signals on location
and orientation estimations, we leverage ensemble learning to learn multiple models using our training data.
By combining them together, we get fine-grained estimations. As original ensemble learning is restrictive
on distributions, we further incorporate mixture density networks to generalize our models with mixture of
distributions. DeepNavi is a general framework that processes various inputs, including Wi-Fi, Bluetooth, visible
light, for both spot-based and sequence-based indoor navigation. As an example, we study indoor navigation with
images and geomagnetic sequence as well as images and Wi-Fi fingerprints. Extensive experiments in two trial
sites demonstrate that the proposed framework achieves more than 20% improvement on localization accuracy
and provides real-time navigation services.

Besides more evaluation, there are three directions that worth investigation for a more systematic exploration
of the design space. In order to extend the deployability to multi-floor environment, one can study the motion
patterns of users with floor transitions, such as taking the escalators and climbing the stairs. In terms of adaptability
to environmental changes, it is possible to study the relationship between environmental changes and uncertainty
values. Afterwards, we can also study network adaptation with collected data by semi-supervised learning. By
studying model optimization [47, 48, 50], it is also possible to deploy neural networks in mobile devices to reduce
privacy concerns.
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